NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 74 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Blozis, Shelley A.; Harring, Jeffrey R. – Sociological Methods & Research, 2021
Nonlinear mixed-effects models are models in which one or more coefficients of the growth model enter in a nonlinear manner, such as appearing in the exponent of the growth function. In their applications, the within-individual residuals are often assumed to be independent with constant variance across time, an assumption that implies that the…
Descriptors: Statistical Analysis, Models, Computation, Goodness of Fit
Emily A. Brown – ProQuest LLC, 2024
Previous research has been limited regarding the measurement of computational thinking, particularly as a learning progression in K-12. This study proposes to apply a multidimensional item response theory (IRT) model to a newly developed measure of computational thinking utilizing both selected response and open-ended polytomous items to establish…
Descriptors: Models, Computation, Thinking Skills, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; Lee, Taehun; Fairchild, Amanda J.; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
This study compares two missing data procedures in the context of ordinal factor analysis models: pairwise deletion (PD; the default setting in Mplus) and multiple imputation (MI). We examine which procedure demonstrates parameter estimates and model fit indices closer to those of complete data. The performance of PD and MI are compared under a…
Descriptors: Factor Analysis, Statistical Analysis, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Wind, Stefanie A.; Jones, Eli – Journal of Educational Measurement, 2019
Researchers have explored a variety of topics related to identifying and distinguishing among specific types of rater effects, as well as the implications of different types of incomplete data collection designs for rater-mediated assessments. In this study, we used simulated data to examine the sensitivity of latent trait model indicators of…
Descriptors: Rating Scales, Models, Evaluators, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Torre, Jimmy de la; Akbay, Lokman – Eurasian Journal of Educational Research, 2019
Purpose: Well-designed assessment methodologies and various cognitive diagnosis models (CDMs) to extract diagnostic information about examinees' individual strengths and weaknesses have been developed. Due to this novelty, as well as educational specialists' lack of familiarity with CDMs, their applications are not widespread. This article aims at…
Descriptors: Cognitive Measurement, Models, Computer Software, Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Durand, Guillaume; Goutte, Cyril; Léger, Serge – International Educational Data Mining Society, 2018
Knowledge tracing is a fundamental area of educational data modeling that aims at gaining a better understanding of the learning occurring in tutoring systems. Knowledge tracing models fit various parameters on observed student performance and are evaluated through several goodness of fit metrics. Fitted parameter values are of crucial interest in…
Descriptors: Error of Measurement, Models, Goodness of Fit, Predictive Validity
Peer reviewed Peer reviewed
Direct linkDirect link
DiStefano, Christine; McDaniel, Heather L.; Zhang, Liyun; Shi, Dexin; Jiang, Zhehan – Educational and Psychological Measurement, 2019
A simulation study was conducted to investigate the model size effect when confirmatory factor analysis (CFA) models include many ordinal items. CFA models including between 15 and 120 ordinal items were analyzed with mean- and variance-adjusted weighted least squares to determine how varying sample size, number of ordered categories, and…
Descriptors: Factor Analysis, Effect Size, Data, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg-Tobias – Educational and Psychological Measurement, 2016
In this article, a new model for test response times is proposed that combines latent class analysis and the proportional hazards model with random effects in a similar vein as the mixture factor model. The model assumes the existence of different latent classes. In each latent class, the response times are distributed according to a…
Descriptors: Reaction Time, Models, Multivariate Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Lance, Charles E.; Fan, Yi – Educational and Psychological Measurement, 2016
We compared six different analytic models for multitrait-multimethod (MTMM) data in terms of convergence, admissibility, and model fit to 258 samples of previously reported data. Two well-known models, the correlated trait-correlated method (CTCM) and the correlated trait-correlated uniqueness (CTCU) models, were fit for reference purposes in…
Descriptors: Multitrait Multimethod Techniques, Factor Analysis, Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Potgieter, Cornelis; Kamata, Akihito; Kara, Yusuf – Grantee Submission, 2017
This study proposes a two-part model that includes components for reading accuracy and reading speed. The speed component is a log-normal factor model, for which speed data are measured by reading time for each sentence being assessed. The accuracy component is a binomial-count factor model, where the accuracy data are measured by the number of…
Descriptors: Reading Rate, Oral Reading, Accuracy, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5