NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming – Educational and Psychological Measurement, 2015
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Descriptors: Structural Equation Models, Statistical Analysis, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
de Leeuw, Christiaan; Klugkist, Irene – Multivariate Behavioral Research, 2012
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Descriptors: Data, Multiple Regression Analysis, Bayesian Statistics, Models
Williams, Ryan T. – ProQuest LLC, 2012
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Descriptors: Multiple Regression Analysis, Meta Analysis, Evaluation Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J. – Psychological Assessment, 2012
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…
Descriptors: Regression (Statistics), Equations (Mathematics), Psychological Evaluation, Multiple Regression Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Aloe, Ariel M.; Becker, Betsy Jane – Journal of Educational and Behavioral Statistics, 2012
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Descriptors: Meta Analysis, Effect Size, Multiple Regression Analysis, Models
Sahni, Sarah Devi – ProQuest LLC, 2010
Early lexical acquisition is affected by biases and constraints within learners, but also by patterns and statistical regularities within a learner's environment. Much of the previous work examining the effect of statistical regularities on word learning has been directed at phonological regularities. Particularly, research has focused on the…
Descriptors: Semantics, Learning Processes, Language Acquisition, Semiotics
Isenberg, Eric; Hock, Heinrich – Mathematica Policy Research, Inc., 2012
In this report, the authors describe the value-added models used as part of teacher evaluation systems in the District of Columbia Public Schools (DCPS) and in eligible DC charter schools participating in Race to the Top. They estimated (1) teacher effectiveness in DCPS and eligible DC charter schools during the 2011-2012 school year; and (2)…
Descriptors: Value Added Models, Teacher Evaluation, Public Schools, Urban Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Psychometrika, 2007
The underlying statistical models for multiple regression analysis are typically attributed to two types of modeling: fixed and random. The procedures for calculating power and sample size under the fixed regression models are well known. However, the literature on random regression models is limited and has been confined to the case of all…
Descriptors: Sample Size, Monte Carlo Methods, Multiple Regression Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Curran, Patrick J.; Bauer, Daniel J.; Willoughby, Michael T. – Psychological Methods, 2004
A key strength of latent curve analysis (LCA) is the ability to model individual variability in rates of change as a function of 1 or more explanatory variables. The measurement of time plays a critical role because the explanatory variables multiplicatively interact with time in the prediction of the repeated measures. However, this interaction…
Descriptors: Multiple Regression Analysis, Predictive Measurement, Models, Item Response Theory