NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Junokas, M. J.; Lindgren, R.; Kang, J.; Morphew, J. W. – Journal of Computer Assisted Learning, 2018
Gestural recognition systems are important tools for leveraging movement-based interactions in multimodal learning environments but personalizing these interactions has proven difficult. We offer an adaptable model that uses multimodal analytics, enabling students to define their physical interactions with computer-assisted learning environments.…
Descriptors: Nonverbal Communication, Multimedia Instruction, Computer Assisted Instruction, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dorça, Fabiano Azevedo; Lima, Luciano Vieira; Fernandes, Márcia Aparecida; Lopes, Carlos Roberto – Informatics in Education, 2012
Considering learning and how to improve students' performances, an adaptive educational system must know how an individual learns best. In this context, this work presents an innovative approach for student modeling through probabilistic learning styles combination. Experiments have shown that our approach is able to automatically detect and…
Descriptors: Cognitive Style, Models, Automation, Probability