Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Computer Assisted Testing | 7 |
Learning Analytics | 7 |
Models | 7 |
Learning Processes | 3 |
Mathematics Tests | 3 |
Prediction | 3 |
Problem Solving | 3 |
Competition | 2 |
Error Patterns | 2 |
Middle School Students | 2 |
Test Construction | 2 |
More ▼ |
Author
Aditya Shah | 1 |
Ajay Devmane | 1 |
Bolsinova, Maria | 1 |
Chang Lu | 1 |
Chenglu Li | 1 |
Deonovic, Benjamin E. | 1 |
Fu Chen | 1 |
Hai Li | 1 |
Hongyun Liu | 1 |
Jianlin Yuan | 1 |
Levin, Nathan A. | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Reports - Evaluative | 1 |
Education Level
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 8 | 1 |
Audience
Location
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Fu Chen; Chang Lu; Ying Cui – Education and Information Technologies, 2024
Successful computer-based assessments for learning greatly rely on an effective learner modeling approach to analyze learner data and evaluate learner behaviors. In addition to explicit learning performance (i.e., product data), the process data logged by computer-based assessments provide a treasure trove of information about how learners solve…
Descriptors: Computer Assisted Testing, Problem Solving, Learning Analytics, Learning Processes
Aditya Shah; Ajay Devmane; Mehul Ranka; Prathamesh Churi – Education and Information Technologies, 2024
Online learning has grown due to the advancement of technology and flexibility. Online examinations measure students' knowledge and skills. Traditional question papers include inconsistent difficulty levels, arbitrary question allocations, and poor grading. The suggested model calibrates question paper difficulty based on student performance to…
Descriptors: Computer Assisted Testing, Difficulty Level, Grading, Test Construction
Meijuan Li; Hongyun Liu; Mengfei Cai; Jianlin Yuan – Education and Information Technologies, 2024
In the human-to-human Collaborative Problem Solving (CPS) test, students' problem-solving process reflects the interdependency among partners. The high interdependency in CPS makes it very sensitive to group composition. For example, the group outcome might be driven by a highly competent group member, so it does not reflect all the individual…
Descriptors: Problem Solving, Computer Assisted Testing, Cooperative Learning, Task Analysis
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Savi, Alexander O.; Deonovic, Benjamin E.; Bolsinova, Maria; van der Maas, Han L. J.; Maris, Gunter K. J. – Journal of Educational Data Mining, 2021
In learning, errors are ubiquitous and inevitable. As these errors may signal otherwise latent cognitive processes, tutors--and students alike--can greatly benefit from the information they provide. In this paper, we introduce and evaluate the Systematic Error Tracing (SET) model that identifies the possible causes of systematically observed…
Descriptors: Learning Processes, Cognitive Processes, Error Patterns, Models
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction