NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Filighera; Sebastian Ochs; Tim Steuer; Thomas Tregel – International Journal of Artificial Intelligence in Education, 2024
Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However,…
Descriptors: Cheating, Grading, Form Classes (Languages), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Seyma N. Yildirim-Erbasli; Okan Bulut – Journal of Applied Testing Technology, 2023
The purpose of this study was to develop predictive models of student test-taking engagement in computerized formative assessments. Using different machine learning algorithms, the models utilize student data with item responses and response time to detect aberrant test behaviors such as rapid guessing. The dataset consisted of 7,602 students…
Descriptors: Computer Assisted Testing, Formative Evaluation, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher D. Wilson; Kevin C. Haudek; Jonathan F. Osborne; Zoë E. Buck Bracey; Tina Cheuk; Brian M. Donovan; Molly A. M. Stuhlsatz; Marisol M. Santiago; Xiaoming Zhai – Journal of Research in Science Teaching, 2024
Argumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning--a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the…
Descriptors: Middle School Students, Competence, Science Process Skills, Persuasive Discourse
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doewes, Afrizal; Saxena, Akrati; Pei, Yulong; Pechenizkiy, Mykola – International Educational Data Mining Society, 2022
In Automated Essay Scoring (AES) systems, many previous works have studied group fairness using the demographic features of essay writers. However, individual fairness also plays an important role in fair evaluation and has not been yet explored. Initialized by Dwork et al., the fundamental concept of individual fairness is "similar people…
Descriptors: Scoring, Essays, Writing Evaluation, Comparative Analysis
Qunbar, Sa'ed Ali – ProQuest LLC, 2019
This work presents a study that used distributed language representations of test items to model test item difficulty. Distributed language representations are low-dimensional numeric representations of written language inspired and generated by artificial neural network architecture. The research begins with a discussion of the importance of item…
Descriptors: Computer Assisted Testing, Test Items, Difficulty Level, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Aust, Frederik; Haaf, Julia M.; Stahl, Christoph – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Evaluative conditioning (EC) is a change in liking of neutral conditioned stimuli (CS) following pairings with positive or negative stimuli (unconditioned stimulus, US). A dissociation has been reported between US expectancy and CS evaluation in extinction learning: When CSs are presented alone subsequent to CS-US pairings, participants cease to…
Descriptors: Memory, Conditioning, Decision Making, Learning Processes
Saekyun H. Lee – ProQuest LLC, 2021
The heightened importance of foreign languages (L2) in the post 9-11 world demands more L2 listening research as listening is considered the most critical skill for most American military linguists. Some larger studies show that lexical knowledge can positively affect L2 listening (Chang, 2007; Mehrpour & Rahimi, 2010; Staehr, 2009), yet…
Descriptors: Second Language Learning, Second Language Instruction, Grade Point Average, Grades (Scholastic)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Capacho, Jose – Turkish Online Journal of Distance Education, 2017
This paper aims at showing a new methodology to assess student learning in virtual spaces supported by Information and Communications Technology-ICT. The methodology is based on the Conceptual Pedagogy Theory, and is supported both on knowledge instruments (KI) and intelectual operations (IO). KI are made up of teaching materials embedded in the…
Descriptors: Student Evaluation, Computer Assisted Testing, Difficulty Level, Thinking Skills
Previous Page | Next Page »
Pages: 1  |  2  |  3