Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Accuracy | 2 |
| Computer Mediated… | 2 |
| Item Response Theory | 2 |
| Models | 2 |
| Artificial Intelligence | 1 |
| Classification | 1 |
| Cooperative Learning | 1 |
| Electronic Learning | 1 |
| Evaluators | 1 |
| Group Discussion | 1 |
| Identification | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 2 |
| Reports - Research | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ilagan, Michael John; Falk, Carl F. – Educational and Psychological Measurement, 2023
Administering Likert-type questionnaires to online samples risks contamination of the data by malicious computer-generated random responses, also known as bots. Although nonresponsivity indices (NRIs) such as person-total correlations or Mahalanobis distance have shown great promise to detect bots, universal cutoff values are elusive. An initial…
Descriptors: Likert Scales, Questionnaires, Artificial Intelligence, Identification
Uto, Masaki; Nguyen, Duc-Thien; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2020
With the wide spread large-scale e-learning environments such as MOOCs, peer assessment has been popularly used to measure the learner ability. When the number of learners increases, peer assessment is often conducted by dividing learners into multiple groups to reduce the learner's assessment workload. However, in such cases, the peer assessment…
Descriptors: Item Response Theory, Electronic Learning, Peer Evaluation, Accuracy

Peer reviewed
Direct link
