NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Fergusson; Maxine Pfannkuch – Journal of Statistics and Data Science Education, 2024
Statistics teaching at the high school level needs modernizing to include digital sources of data that students interact with every day. Algorithmic modeling approaches are recommended, as they can support the teaching of data science and computational thinking. Research is needed about the design of tasks that support high school statistics…
Descriptors: High School Students, Statistics Education, Thinking Skills, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Berriri, Mehdi; Djema, Sofiane; Rey, Gaëtan; Dartigues-Pallez, Christel – Education Sciences, 2021
Today, many students are moving towards higher education courses that do not suit them and end up failing. The purpose of this study is to help provide counselors with better knowledge so that they can offer future students courses corresponding to their profile. The second objective is to allow the teaching staff to propose training courses…
Descriptors: Student Evaluation, Artificial Intelligence, Classification, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Jimenez, Fernando; Paoletti, Alessia; Sanchez, Gracia; Sciavicco, Guido – IEEE Transactions on Learning Technologies, 2019
In the European academic systems, the public funding to single universities depends on many factors, which are periodically evaluated. One of such factors is the rate of success, that is, the rate of students that do complete their course of study. At many levels, therefore, there is an increasing interest in being able to predict the risk that a…
Descriptors: Prediction, Risk, Dropouts, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ramazanoglu, Mehmet – European Journal of Educational Sciences, 2021
This paper focuses on revealing and modeling the cognitive constructs of pre-service teachers regarding the characteristics of a good IT academician. The research was carried out via the exploratory sequential design with the participation of 42 volunteer pre-service teachers enrolled in the Department of Computer and Instructional Technology. The…
Descriptors: Preservice Teachers, Student Attitudes, Information Technology, Cognitive Structures
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Raman, Raghu; Venkatasubramanian, Smrithi; Achuthan, Krishnashree; Nedungadi, Prema – ACM Transactions on Computing Education, 2015
Computer science (CS) and its enabling technologies are at the heart of this information age, yet its adoption as a core subject by senior secondary students in Indian schools is low and has not reached critical mass. Though there have been efforts to create core curriculum standards for subjects like Physics, Chemistry, Biology, and Math, CS…
Descriptors: Foreign Countries, Computer Science Education, Classification, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Srba, Ivan; Bielikova, Maria – IEEE Transactions on Learning Technologies, 2015
In the current time of globalization, collaboration among people in virtual environments is becoming an important precondition of success. This trend is reflected also in the educational domain where students collaborate in various short-term groups created repetitively but changing in each round (e.g. in MOOCs). Students in these kind of dynamic…
Descriptors: Cooperative Learning, Online Courses, Group Dynamics, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McAleer, Brenda; Szakas, Joseph S. – Information Systems Education Journal, 2010
In the past few years, universities have become much more involved in outcomes assessment. Outside of the classroom analysis of learning outcomes, an investigation is performed into the use of current data mining tools to assess the issue of student retention within the Computer Information Systems (CIS) department. Utilizing both a historical…
Descriptors: College Students, Computer Science Education, Information Systems, Prior Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amershi, Saleema; Conati, Cristina – Journal of Educational Data Mining, 2009
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…
Descriptors: Supervision, Classification, Models, Educational Environment
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Abel, Marie-Helene; Benayache, Ahcene; Lenne, Dominique; Moulin, Claude; Barry, Catherine; Chaput, Brigitte – Educational Technology & Society, 2004
E-learning leads to evolutions in the way of designing a course. Diffused through the web, the course content cannot be the direct transcription of a face to face course content. A course can be seen as an organization in which different actors are involved. These actors produce documents, information and knowledge that they often share. We…
Descriptors: Course Content, Internet, College Instruction, Models
Previous Page | Next Page »
Pages: 1  |  2