NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Nagengast, Benjamin; Trautwein, Ulrich; Morin, Alexandre J. S.; Abduljabbar, Adel S.; Koller, Olaf – Educational Psychologist, 2012
Classroom context and climate are inherently classroom-level (L2) constructs, but applied researchers sometimes--inappropriately--represent them by student-level (L1) responses in single-level models rather than more appropriate multilevel models. Here we focus on important conceptual issues (distinctions between climate and contextual variables;…
Descriptors: Foreign Countries, Classroom Environment, Educational Research, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin – Multivariate Behavioral Research, 2009
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Descriptors: Educational Environment, Context Effect, Models, Structural Equation Models
Rizavi, Saba; Way, Walter D.; Davey, Tim; Herbert, Erin – Educational Testing Service, 2004
Item parameter estimates vary for a variety of reasons, including estimation error, characteristics of the examinee samples, and context effects (e.g., item location effects, section location effects, etc.). Although we expect variation based on theory, there is reason to believe that observed variation in item parameter estimates exceeds what…
Descriptors: Adaptive Testing, Test Items, Computation, Context Effect