NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Kai; Tatinati, Sivanagaraja; Khong, Andy W. H. – IEEE Transactions on Learning Technologies, 2020
Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are…
Descriptors: Context Effect, Models, Learning Analytics, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Rwitajit Majumdar; Huiyong Li; Yuanyuan Yang; Hiroaki Ogata – Educational Technology & Society, 2024
Self-direction skill (SDS) is an essential 21st-century skill that can help learners be independent and organized in their quest for knowledge acquisition. While some studies considered learners from higher education levels as the target audience, providing opportunities to start the SDS practice by K12 learners is still rare. Further, practicing…
Descriptors: 21st Century Skills, Skill Development, Electronic Learning, Physical Activity Level
Peer reviewed Peer reviewed
Direct linkDirect link
Piety, Philip J. – Review of Research in Education, 2019
This chapter reviews actionable data use--both as an umbrella term and as a specific concept--developed in three different traditions that data/information can inform and guide P-20 educational practice toward better outcomes. The literatures reviewed are known as data-driven decision making (DDDM), education data mining (EDM), and learning…
Descriptors: Educational Practices, Data Use, Outcomes of Education, Learning Analytics