NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Tingting; Lajoie, Susanne P. – Educational Psychology Review, 2023
Although cognitive load (CL) and self-regulated learning (SRL) have been widely recognized as two determinant factors of students' performance, the integration of these two factors is still in its infancy. To further specify why and how CL links with SRL, we first conducted an overview to describe the multiple dimensions of cognitive load (i.e.,…
Descriptors: Cognitive Ability, Metacognition, Cognitive Processes, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Guanliang; Ferreira, Rafael; Lang, David; Gasevic, Dragan – International Educational Data Mining Society, 2019
For the development of successful human-agent dialogue-based tutoring systems, it is essential to understand what makes a human-human tutorial dialogue successful. While there has been much research on dialogue-based intelligent tutoring systems, there have been comparatively fewer studies on analyzing large-scale datasets of human-human online…
Descriptors: Student Attitudes, Intelligent Tutoring Systems, Computer Software, Dialogs (Language)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ai, Fangzhe; Chen, Yishuai; Guo, Yuchun; Zhao, Yongxiang; Wang, Zhenzhu; Fu, Guowei; Wang, Guangyan – International Educational Data Mining Society, 2019
Personalized education systems recommend learning contents to students based on their capacity to accelerate their learning. This paper proposes a personalized exercise recommendation system for online self-directed learning. We first improve the performance of knowledge tracing models. Existing deep knowledge tracing models, such as Dynamic…
Descriptors: Online Courses, Independent Study, Grade 5, Elementary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Chi, Min – International Educational Data Mining Society, 2016
We explored a series of feature selection methods for model-based Reinforcement Learning (RL). More specifically, we explored four common correlation metrics and based on them, we proposed the fifth one named Weighed Information Gain (WIG). While much existing correlation-based feature selection methods mostly explored high correlation by default,…
Descriptors: Correlation, Selection, Methods, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Sottilare, Robert A.; Shawn Burke, C.; Salas, Eduardo; Sinatra, Anne M.; Johnston, Joan H.; Gilbert, Stephen B. – International Journal of Artificial Intelligence in Education, 2018
The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or…
Descriptors: Meta Analysis, Teaching Methods, Teamwork, Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Gálvez, Jaime; Conejo, Ricardo; Guzmán, Eduardo – International Journal of Artificial Intelligence in Education, 2013
One of the most popular student modeling approaches is Constraint-Based Modeling (CBM). It is an efficient approach that can be easily applied inside an Intelligent Tutoring System (ITS). Even with these characteristics, building new ITSs requires carefully designing the domain model to be taught because different sources of errors could affect…
Descriptors: Models, Problem Solving, Intelligent Tutoring Systems, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Chih-Ming; Wang, Jung-Ying; Chen, Yong-Ting; Wu, Jhih-Hao – Interactive Learning Environments, 2016
To reduce effectively the reading anxiety of learners while reading English articles, a C4.5 decision tree, a widely used data mining technique, was used to develop a personalized reading anxiety prediction model (PRAPM) based on individual learners' reading annotation behavior in a collaborative digital reading annotation system (CDRAS). In…
Descriptors: Reading Strategies, Prediction, Models, Quasiexperimental Design
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M. – Journal of the Learning Sciences, 2013
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Probability, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Botvinick, Matthew M.; Niv, Yael; Barto, Andrew C. – Cognition, 2009
Research on human and animal behavior has long emphasized its hierarchical structure--the divisibility of ongoing behavior into discrete tasks, which are comprised of subtask sequences, which in turn are built of simple actions. The hierarchical structure of behavior has also been of enduring interest within neuroscience, where it has been widely…
Descriptors: Intelligent Tutoring Systems, Animal Behavior, Reinforcement, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cetintas, Suleyman; Si, Luo; Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tzur, Ron – Journal of Educational Data Mining, 2010
Estimating the difficulty level of math word problems is an important task for many educational applications. Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the difficulty levels of such problems. This paper addresses a novel application of text categorization to identify two types of…
Descriptors: Probability, Word Problems (Mathematics), Classification, Difficulty Level
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection