Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 11 |
Descriptor
Data | 11 |
Error of Measurement | 11 |
Models | 11 |
Simulation | 5 |
Comparative Analysis | 4 |
Computation | 4 |
Item Response Theory | 4 |
Research Problems | 3 |
Statistical Bias | 3 |
Classification | 2 |
Educational Research | 2 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 5 |
Reports - Evaluative | 4 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Audience
Location
Michigan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Carpentras, Dino; Quayle, Michael – International Journal of Social Research Methodology, 2023
Agent-based models (ABMs) often rely on psychometric constructs such as 'opinions', 'stubbornness', 'happiness', etc. The measurement process for these constructs is quite different from the one used in physics as there is no standardized unit of measurement for opinion or happiness. Consequently, measurements are usually affected by 'psychometric…
Descriptors: Psychometrics, Error of Measurement, Models, Prediction
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation
Luecht, Richard; Ackerman, Terry A. – Educational Measurement: Issues and Practice, 2018
Simulation studies are extremely common in the item response theory (IRT) research literature. This article presents a didactic discussion of "truth" and "error" in IRT-based simulation studies. We ultimately recommend that future research focus less on the simple recovery of parameters from a convenient generating IRT model,…
Descriptors: Item Response Theory, Simulation, Ethics, Error of Measurement
DiStefano, Christine; McDaniel, Heather L.; Zhang, Liyun; Shi, Dexin; Jiang, Zhehan – Educational and Psychological Measurement, 2019
A simulation study was conducted to investigate the model size effect when confirmatory factor analysis (CFA) models include many ordinal items. CFA models including between 15 and 120 ordinal items were analyzed with mean- and variance-adjusted weighted least squares to determine how varying sample size, number of ordered categories, and…
Descriptors: Factor Analysis, Effect Size, Data, Sample Size
Jacob, Robin T.; Goddard, Roger D.; Kim, Eun Sook – Educational Evaluation and Policy Analysis, 2014
It is often difficult and costly to obtain individual-level student achievement data, yet, researchers are frequently reluctant to use school-level achievement data that are widely available from state websites. We argue that public-use aggregate school-level achievement data are, in fact, sufficient to address a wide range of evaluation questions…
Descriptors: Academic Achievement, Data, Information Utilization, Educational Assessment
Hamaker, E. L.; Grasman, R. P. P. P. – Psychometrika, 2012
Many psychological processes are characterized by recurrent shifts between distinct regimes or states. Examples that are considered in this paper are the switches between different states associated with premenstrual syndrome, hourly fluctuations in affect during a major depressive episode, and shifts between a "hot hand" and a…
Descriptors: Psychological Patterns, Statistical Inference, Data, Simulation
Cheema, Jehanzeb R. – Review of Educational Research, 2014
Missing data are a common occurrence in survey-based research studies in education, and the way missing values are handled can significantly affect the results of analyses based on such data. Despite known problems with performance of some missing data handling methods, such as mean imputation, many researchers in education continue to use those…
Descriptors: Educational Research, Data, Data Collection, Data Processing
Elosua, Paula – Psicologica: International Journal of Methodology and Experimental Psychology, 2011
Assessing measurement equivalence in the framework of the common factor linear models (CFL) is known as factorial invariance. This methodology is used to evaluate the equivalence among the parameters of a measurement model among different groups. However, when dichotomous, Likert, or ordered responses are used, one of the assumptions of the CFL is…
Descriptors: Measurement, Models, Data, Factor Analysis
Maydeu-Olivares, Alberto; Brown, Anna – Multivariate Behavioral Research, 2010
The comparative format used in ranking and paired comparisons tasks can significantly reduce the impact of uniform response biases typically associated with rating scales. Thurstone's (1927, 1931) model provides a powerful framework for modeling comparative data such as paired comparisons and rankings. Although Thurstonian models are generally…
Descriptors: Item Response Theory, Rating Scales, Models, Comparative Analysis
Sullivan, Paul – Journal of Human Resources, 2009
This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…
Descriptors: Computation, Models, Career Choice, Error Correction