NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 100 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wan-Chong Choi; Chan-Tong Lam; António José Mendes – International Educational Data Mining Society, 2025
Missing data presents a significant challenge in Educational Data Mining (EDM). Imputation techniques aim to reconstruct missing data while preserving critical information in datasets for more accurate analysis. Although imputation techniques have gained attention in various fields in recent years, their use for addressing missing data in…
Descriptors: Research Problems, Data Analysis, Research Methodology, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Amine Boulahmel; Fahima Djelil; Gregory Smits – Technology, Knowledge and Learning, 2025
Self-regulated learning (SRL) theory comprises cognitive, metacognitive, and affective aspects that enable learners to autonomously manage their learning processes. This article presents a systematic literature review on the measurement of SRL in digital platforms, that compiles the 53 most relevant empirical studies published between 2015 and…
Descriptors: Independent Study, Educational Research, Classification, Educational Indicators
Peer reviewed Peer reviewed
Direct linkDirect link
Stephanie Fuchs; Alexandra Werth; Cristóbal Méndez; Jonathan Butcher – Journal of Engineering Education, 2025
Background: High-quality feedback is crucial for academic success, driving student motivation and engagement while research explores effective delivery and student interactions. Advances in artificial intelligence (AI), particularly natural language processing (NLP), offer innovative methods for analyzing complex qualitative data such as feedback…
Descriptors: Artificial Intelligence, Training, Data Analysis, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Magooda, Ahmed; Elaraby, Mohamed; Litman, Diane – Grantee Submission, 2021
This paper explores the effect of using multitask learning for abstractive summarization in the context of small training corpora. In particular, we incorporate four different tasks (extractive summarization, language modeling, concept detection, and paraphrase detection) both individually and in combination, with the goal of enhancing the target…
Descriptors: Data Analysis, Synthesis, Documentation, Training
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson – Grantee Submission, 2021
When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of…
Descriptors: Coding, Artificial Intelligence, Models, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Swai, Carina Titus; Mangowi, Steven Edward – International Journal of Information and Learning Technology, 2022
Purpose: The general goal of this paper is to help educators understand the importance of MOOC training to school teachers and their hypothetical value for predicting the use of teaching strategies in the face-to face-classroom teaching. With this purpose, the study is guided by two research questions: (1) Are there different patterns of…
Descriptors: Teacher Attitudes, Preferences, Teaching Methods, Conventional Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Joseph; Pollard, Benjamin; Aiken, John M.; Lewandowski, H. J. – Physical Review Physics Education Research, 2022
Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights…
Descriptors: Natural Language Processing, Science Education, Physics, Artificial Intelligence
Bui, Ngoc Van P. – ProQuest LLC, 2022
This research explores the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve the performance and explainability of artificial intelligence (AI) and machine learning (ML) models predicting at-risk students. Explainable predictions provide students and educators with more insight into at-risk indicators and…
Descriptors: Artificial Intelligence, At Risk Students, Prediction, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Carragher, Natacha; Templin, Jonathan; Jones, Phillip; Shulruf, Boaz; Velan, Gary – Educational Measurement: Issues and Practice, 2019
In this ITEMS module, we provide a didactic overview of the specification, estimation, evaluation, and interpretation steps for diagnostic measurement/classification models (DCMs), which are a promising psychometric modeling approach. These models can provide detailed skill- or attribute-specific feedback to respondents along multiple latent…
Descriptors: Measurement, Classification, Models, Check Lists
Peer reviewed Peer reviewed
Direct linkDirect link
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7