NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey…1
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
Learning interaction activities are the key part of tracking and evaluating learning behaviors, that plays an important role in data-driven autonomous learning and optimized learning in interactive learning environments. In this study, a big data set of learning behaviors with multiple learning periods is selected. According to the instance…
Descriptors: Behavior, Learning Processes, Electronic Learning, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Junokas, M. J.; Lindgren, R.; Kang, J.; Morphew, J. W. – Journal of Computer Assisted Learning, 2018
Gestural recognition systems are important tools for leveraging movement-based interactions in multimodal learning environments but personalizing these interactions has proven difficult. We offer an adaptable model that uses multimodal analytics, enabling students to define their physical interactions with computer-assisted learning environments.…
Descriptors: Nonverbal Communication, Multimedia Instruction, Computer Assisted Instruction, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Gould, Robert; Bargagliotti, Anna; Johnson, Terri – Statistics Education Research Journal, 2017
Participatory sensing is a data collection method in which communities of people collect and share data to investigate large-scale processes. These data have many features often associated with the big data paradigm: they are rich and multivariate, include non-numeric data, and are collected as determined by an algorithm rather than by traditional…
Descriptors: Secondary School Teachers, Logical Thinking, Data Collection, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Toure, Ibrahim – ProQuest LLC, 2017
Terrorism is a complex and evolving phenomenon. In the past few decades, we have witnessed an increase in the number of terrorist incidents in the world. The security and stability of many countries is threatened by terrorist groups. Perpetrators now use sophisticated weapons and the attacks are more and more lethal. Currently, terrorist incidents…
Descriptors: Data Analysis, Prediction, Terrorism, Risk
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andrade, Alejandro; Delandshere, Ginette; Danish, Joshua A. – Journal of Learning Analytics, 2016
One of the challenges many learning scientists face is the laborious task of coding large amounts of video data and consistently identifying social actions, which is time consuming and difficult to accomplish in a systematic and consistent manner. It is easier to catalog observable behaviours (e.g., body motions or gaze) without explicitly…
Descriptors: Student Behavior, Data Analysis, Models, Video Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caprotti, Olga – Journal of Learning Analytics, 2017
This paper describes investigations in visualizing logpaths of students in an online calculus course held at Florida State University in 2014. The clickstreams making up the logpaths can be used to visualize student progress in the information space of a course as a graph. We consider the graded activities as nodes of the graph, while information…
Descriptors: Online Courses, Calculus, Markov Processes, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Geigle, Chase – ProQuest LLC, 2018
There are two primary challenges for instructors in offering a high-quality course at large scale. The first is scaling educational experiences to such a large audience. The second major challenge encountered is that of enabling adaptivity of the educational experience. This thesis addresses both major challenges in the way of high-quality…
Descriptors: Barriers, Educational Quality, Computer Assisted Testing, Educational Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa – Multivariate Behavioral Research, 2011
The process-component approach has become quite popular for examining many psychological concepts. A typical example is the model with internal restrictions on item difficulty (MIRID) described by Butter (1994) and Butter, De Boeck, and Verhelst (1998). This study proposes a hierarchical generalized random-situation random-weight MIRID. The…
Descriptors: Markov Processes, Computer Software, Psychology, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Tchumtchoua, Sylvie; Dey, Dipak K. – Psychometrika, 2012
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Descriptors: Factor Analysis, Bayesian Statistics, Behavioral Sciences, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Previous Page | Next Page »
Pages: 1  |  2