Publication Date
In 2025 | 1 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 19 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 19 |
Descriptor
Algorithms | 19 |
Electronic Learning | 19 |
Models | 19 |
Artificial Intelligence | 11 |
Prediction | 7 |
Technology Uses in Education | 5 |
Educational Technology | 4 |
Academic Achievement | 3 |
College Students | 3 |
Data Analysis | 3 |
Evaluation | 3 |
More ▼ |
Source
Author
Adil Boughida | 1 |
Adjei, Laurene | 1 |
Agbesi, Victor Kwaku | 1 |
Ankora, Carlos | 1 |
Badal, Yudish Teshal | 1 |
Bensah, Lily | 1 |
Chanaa, Abdessamad | 1 |
Chenglong Wang | 1 |
Dakshita Kolte | 1 |
Dave Darshan | 1 |
Ean Teng Khor | 1 |
More ▼ |
Publication Type
Journal Articles | 18 |
Reports - Research | 15 |
Reports - Evaluative | 3 |
Dissertations/Theses -… | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Audience
Location
Estonia (Tallinn) | 1 |
Ghana | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Adil Boughida; Mohamed Nadjib Kouahla; Yacine Lafifi – Education and Information Technologies, 2024
In e-learning environments, most adaptive systems do not consider the learner's emotional state when recommending activities for learning difficulties, blockages, or demotivation. In this paper, we propose a new approach of emotion-based adaptation in e-learning environments. The system will allow recommendation resources/activities to motivate…
Descriptors: Psychological Patterns, Electronic Learning, Educational Environment, Models
Shuanghong Shen; Qi Liu; Zhenya Huang; Yonghe Zheng; Minghao Yin; Minjuan Wang; Enhong Chen – IEEE Transactions on Learning Technologies, 2024
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In…
Descriptors: Student Behavior, Electronic Learning, Data Analysis, Models
Gamze Türkmen – Journal of Educational Computing Research, 2025
Explainable Artificial Intelligence (XAI) refers to systems that make AI models more transparent, helping users understand how outputs are generated. XAI algorithms are considered valuable in educational research, supporting outcomes like student success, trust, and motivation. Their potential to enhance transparency and reliability in online…
Descriptors: Artificial Intelligence, Natural Language Processing, Trust (Psychology), Electronic Learning
Xueyu Sun; Ting Wang – International Journal of Information and Communication Technology Education, 2024
This study innovates English network teaching by applying a refined Association Rule Mining (ARM) algorithm. It integrates an "interest" parameter into ARM, dynamically adapting content to individual learners' profiles, improving engagement and outcomes. Controlled experiments, spanning diverse online platforms, validate the ARM model's…
Descriptors: Models, Design, Algorithms, Individualized Instruction
Badal, Yudish Teshal; Sungkur, Roopesh Kevin – Education and Information Technologies, 2023
The outbreak of COVID-19 has caused significant disruption in all sectors and industries around the world. To tackle the spread of the novel coronavirus, the learning process and the modes of delivery had to be altered. Most courses are delivered traditionally with face-to-face or a blended approach through online learning platforms. In addition,…
Descriptors: Prediction, Models, Learning Analytics, Grades (Scholastic)
Jyoti Wadmare; Dakshita Kolte; Kapil Bhatia; Palak Desai; Ganesh Wadmare – Journal of Information Technology Education: Innovations in Practice, 2024
Aim/Purpose: This paper highlights an innovative and impactful online operating system algorithms e-learning tool in engineering education. Background: Common teaching methodologies make it difficult to teach complex algorithms of operating systems. This paper presents a solution to this problem by providing simulations of different complex…
Descriptors: Engineering, Science Education, Material Development, Computer Simulation
Xia, Xiaona – Interactive Learning Environments, 2023
Learning interaction activities are the key part of tracking and evaluating learning behaviors, that plays an important role in data-driven autonomous learning and optimized learning in interactive learning environments. In this study, a big data set of learning behaviors with multiple learning periods is selected. According to the instance…
Descriptors: Behavior, Learning Processes, Electronic Learning, Algorithms
Kuadey, Noble Arden; Mahama, Francois; Ankora, Carlos; Bensah, Lily; Maale, Gerald Tietaa; Agbesi, Victor Kwaku; Kuadey, Anthony Mawuena; Adjei, Laurene – Interactive Technology and Smart Education, 2023
Purpose: This study aims to investigate factors that could predict the continued usage of e-learning systems, such as the learning management systems (LMS) at a Technical University in Ghana using machine learning algorithms. Design/methodology/approach: The proposed model for this study adopted a unified theory of acceptance and use of technology…
Descriptors: Foreign Countries, College Students, Learning Management Systems, Student Behavior
Nathalie Rzepka; Linda Fernsel; Hans-Georg Müller; Katharina Simbeck; Niels Pinkwart – Computer-Based Learning in Context, 2023
Algorithms and machine learning models are being used more frequently in educational settings, but there are concerns that they may discriminate against certain groups. While there is some research on algorithmic fairness, there are two main issues with the current research. Firstly, it often focuses on gender and race and ignores other groups.…
Descriptors: Algorithms, Artificial Intelligence, Models, Bias
Ujjwal Biswas; Samit Bhattacharya – Education and Information Technologies, 2024
The application of machine learning (ML) has grown and is now used to enhance learning outcomes. In blended classroom settings, ML, emerging smartphones and wearable technologies are commonly used to improve teaching and learning. The combination of these advanced technologies and ML plays a crucial role in enhancing real-time feedback quality.…
Descriptors: Artificial Intelligence, Blended Learning, Flipped Classroom, Technology Uses in Education
Hongyu Xie; He Xiao; Yu Hao – International Journal of Web-Based Learning and Teaching Technologies, 2024
Modern e-learning system is a representative service form in innovative service industry. This paper designs a personalized service domain system, optimizes various parameters and can be applied to different education quality evaluation, and proposes a decision tree recommendation algorithm. Information gain is carried out through many existing…
Descriptors: Artificial Intelligence, Electronic Learning, Individualized Instruction, Models
Olga Ovtšarenko – Discover Education, 2024
Machine learning (ML) methods are among the most promising technologies with wide-ranging research opportunities, particularly in the field of education, where they can be used to enhance student learning outcomes. This study explores the potential of machine learning algorithms to build and train models using log data from the "3D…
Descriptors: Artificial Intelligence, Algorithms, Technology Uses in Education, Opportunities
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Chanaa, Abdessamad; El Faddouli, Nour-eddine – International Journal of Information and Communication Technology Education, 2022
Massive open online courses (MOOCs) have evolved rapidly in recent years due to their open and massive nature. However, MOOCs suffer from a high dropout rate, since learners struggle to stay cognitively and emotionally engaged. Learner feedback is an excellent way to understand learner behaviour and model early decision making. In the presented…
Descriptors: MOOCs, Student Attitudes, Data Analysis, Electronic Learning
Previous Page | Next Page »
Pages: 1 | 2