NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 45 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Tao; Hu, Shengze; Yang, Huali; Geng, Jing; Liu, Sannyuya; Zhang, Hao; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services, such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which…
Descriptors: Educational Technology, Prediction, Electronic Learning, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sebbaq, Hanane; El Faddouli, Nour-eddine – International Review of Research in Open and Distributed Learning, 2022
The quality assurance of MOOCs focuses on improving their pedagogical quality. However, the tools that allow reflection on and assistance regarding the pedagogical aspects of MOOCs are limited. The pedagogical classification of MOOCs is a difficult task, given the variability of MOOCs' content, structure, and designs. Pedagogical researchers have…
Descriptors: MOOCs, Classification, Educational Objectives, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Hanxiang; Xing, Wanli – Distance Education, 2023
Online discussion forums are highly valued by instructors due to their affordance for understanding class activities and learning. However, a discussion forum with a great number of posts requires a large amount of time to view, and help requests are easily overlooked. Various machine-learning--based tools have been developed to help instructors…
Descriptors: Computer Mediated Communication, Discussion Groups, Classification, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Sebbaq, Hanane; El Faddouli, Nour-eddine – Interactive Technology and Smart Education, 2022
Purpose: The purpose of this study is, First, to leverage the limitation of annotated data and to identify the cognitive level of learning objectives efficiently, this study adopts transfer learning by using word2vec and a bidirectional gated recurrent units (GRU) that can fully take into account the context and improves the classification of the…
Descriptors: MOOCs, Classification, Electronic Learning, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Megahed, Naglaa Ali; Ghoneim, Ehab Mahmoud – International Journal of Learning Technology, 2022
Many academic institutions have relied exclusively on traditional learning, but the sudden outbreak of COVID-19 shook all educational systems by forcing a shift to emergency remote teaching. The purpose of this study is to understand this transformation and consider the concept of an e-learning ecosystem for building sustainable education to…
Descriptors: Electronic Learning, Ecology, Sustainability, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Ghallabi, Sameh; Essalmi, Fathi; Jemni, Mohamed; Kinshuk – Education and Information Technologies, 2020
With the emergence of technology, the personalization of e-learning systems is enhanced. These systems use a set of parameters for personalizing courses. However, in literature, these parameters are not based on classification and optimization algorithms to implement them in the cloud. Cloud computing is a new model of computing where standard and…
Descriptors: Electronic Learning, Internet, Information Storage, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ouissem, Benmesbah; Lamia, Mahnane; Hafidi, Mohamed – International Journal of Web-Based Learning and Teaching Technologies, 2021
Context modeling is the keystone to enable the intelligent system to adapt its functionalities properly to different situations. As such, a representation mechanism that allows an adequate manipulation of this kind of information is required, and diverse approaches have been introduced; however, what takes more value and is being positioned as a…
Descriptors: Electronic Learning, Educational Technology, Models, Educational Methods
Peer reviewed Peer reviewed
Direct linkDirect link
El Aissaoui, Ouafae; El Alami El Madani, Yasser; Oughdir, Lahcen; El Allioui, Youssouf – Education and Information Technologies, 2019
Adaptive E-learning platforms provide personalized learning process relying mainly on learning styles. The traditional approach to find learning styles depends on asking learners to self-evaluate their own attitudes and behaviors through surveys and questionnaires. This approach presents several weaknesses including the lack of self-awareness of…
Descriptors: Classification, Cognitive Style, Models, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cerón-Figueroa, Sergio; López-Yáñez, Itzamá; Villuendas-Rey, Yenny; Camacho-Nieto, Oscar; Aldape-Pérez, Mario; Yáñez-Márquez, Cornelio – International Review of Research in Open and Distributed Learning, 2017
The present work describes an original associative model of pattern classification and its application to align different ontologies containing Learning Objects (LOs), which are in turn related to Open and Distance Learning (ODL) educative content. The problem of aligning ontologies is known as Ontology Matching Problem (OMP), whose solution is…
Descriptors: Open Education, Distance Education, Classification, Metadata
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jancaríková, Katerina; Jancarík, Antonín – Electronic Journal of e-Learning, 2017
PISA study has defined several key areas to be paid attention to by teachers. One of these areas is work with models. The term model can be understood very broadly, it can refer to a drawing of a chemical reaction, a plastic model, a permanent mount (taxidermy) to advanced 3D projections. Teachers are no longer confined to teaching materials and…
Descriptors: Foreign Countries, Models, Electronic Learning, Science Education
Sahba Akhavan Niaki – ProQuest LLC, 2018
The increasing amount of available subjective text data in internet such as product reviews, movie critiques and social media comments provides golden opportunities for information retrieval researchers to extract useful information out of such datasets. Topic modeling and sentiment analysis are two widely researched fields that separately try to…
Descriptors: Models, Classification, Content Analysis, Documentation
Peer reviewed Peer reviewed
Direct linkDirect link
Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda – International Journal on E-Learning, 2014
Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…
Descriptors: Electronic Learning, Learning Experience, Distance Education, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3