NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rashid, M. Parvez; Xiao, Yunkai; Gehringer, Edward F. – International Educational Data Mining Society, 2022
Peer assessment can be a more effective pedagogical method when reviewers provide quality feedback. But what makes feedback helpful to reviewees? Other studies have identified quality feedback as focusing on detecting problems, providing suggestions, or pointing out where changes need to be made. However, it is important to seek students'…
Descriptors: Peer Evaluation, Feedback (Response), Natural Language Processing, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Ryan Daniel Budnick – ProQuest LLC, 2023
The past thirty years have shown a rise in models of language acquisition in which the state of the learner is characterized as a probability distribution over a set of non-stochastic grammars. In recent years, increasingly powerful models have been constructed as earlier models have failed to generalize well to increasingly complex and realistic…
Descriptors: Grammar, Feedback (Response), Algorithms, Computational Linguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hunkoog Jho; Minsu Ha – Journal of Baltic Science Education, 2024
This study aimed at examining the performance of generative artificial intelligence to extract argumentation elements from text. Thus, the researchers developed a web-based framework to provide automated assessment and feedback relying on a large language model, ChatGPT. The results produced by ChatGPT were compared to human experts across…
Descriptors: Feedback (Response), Artificial Intelligence, Persuasive Discourse, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li Dong – Language Teaching Research Quarterly, 2024
This personal reflection explores the ethical considerations surrounding the use of ChatGPT in ESL writing education. It begins by highlighting contrasting perspectives on the tool's impact, from skepticism to its potential as an empowering resource for students, particular with the immediate feedback ChatGPT provides. Then in reviewing existing…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Araz Zirar – Review of Education, 2023
Recent developments in language models, such as ChatGPT, have sparked debate. These tools can help, for example, dyslexic people, to write formal emails from a prompt and can be used by students to generate assessed work. Proponents argue that language models enhance the student experience and academic achievement. Those concerned argue that…
Descriptors: Artificial Intelligence, Technology Uses in Education, Natural Language Processing, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Rybinski, Krzysztof; Kopciuszewska, Elzbieta – Assessment & Evaluation in Higher Education, 2021
This article presents the first-ever big data study of the student evaluation of teaching (SET) using artificial intelligence (AI). We train natural language processing (NLP) models on 1.6 million student evaluations from the US and the UK. We address two research questions: (1) are these models able to predict student ratings from the student…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation of Teacher Performance, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Charlotte N. Gunawardena; Yan Chen; Nick Flor; Damien Sánchez – Online Learning, 2023
Gunawardena et al.'s (1997) Interaction Analysis Model (IAM) is one of the most frequently employed frameworks to guide the qualitative analysis of social construction of knowledge online. However, qualitative analysis is time consuming, and precludes immediate feedback to revise online courses while being delivered. To expedite analysis with a…
Descriptors: Models, Learning Processes, Knowledge Level, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Azevedo, Ana, Ed.; Azevedo, José, Ed. – IGI Global, 2019
E-assessments of students profoundly influence their motivation and play a key role in the educational process. Adapting assessment techniques to current technological advancements allows for effective pedagogical practices, learning processes, and student engagement. The "Handbook of Research on E-Assessment in Higher Education"…
Descriptors: Higher Education, Computer Assisted Testing, Multiple Choice Tests, Guides
Previous Page | Next Page »
Pages: 1  |  2