Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 14 |
Since 2016 (last 10 years) | 34 |
Since 2006 (last 20 years) | 58 |
Descriptor
Bayesian Statistics | 60 |
Foreign Countries | 60 |
Models | 60 |
Item Response Theory | 15 |
Computation | 13 |
Achievement Tests | 11 |
College Students | 11 |
Monte Carlo Methods | 11 |
Accuracy | 10 |
Correlation | 10 |
Decision Making | 10 |
More ▼ |
Source
Author
Huang, Hung-Yu | 4 |
Wang, Wen-Chung | 3 |
Barnes, Tiffany, Ed. | 2 |
Nokelainen, Petri | 2 |
Romero, Cristobal, Ed. | 2 |
Wedel, Michel | 2 |
Abu-Ghazalah, Rashid M. | 1 |
Ahmad, Zaheen F. | 1 |
Alarcon, Rosa | 1 |
Anil, Duygu | 1 |
Arenson, Ethan A. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Administrators | 1 |
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Location
Spain | 5 |
Australia | 4 |
Brazil | 4 |
Taiwan | 4 |
Europe | 3 |
Germany | 3 |
Netherlands | 3 |
Czech Republic | 2 |
France | 2 |
Italy | 2 |
Portugal | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 5 |
Trends in International… | 4 |
Graduate Record Examinations | 1 |
Massachusetts Comprehensive… | 1 |
Raven Progressive Matrices | 1 |
Students Evaluation of… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Jolien Cremers; Laust Hvas Mortensen; Claus Thorn Ekstrøm – Sociological Methods & Research, 2024
Longitudinal studies including a time-to-event outcome in social research often use a form of event history analysis to analyse the influence of time-varying endogenous covariates on the time-to-event outcome. Many standard event history models however assume the covariates of interest to be exogenous and inclusion of an endogenous covariate may…
Descriptors: Longitudinal Studies, Social Science Research, Research Methodology, Bayesian Statistics
Fox, Julian; Osth, Adam F. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2022
In episodic memory research, there is a debate concerning whether decision-making in item recognition and source memory is better explained by models that assume all-or-none retrieval processes or continuous underlying strengths. One aspect in which these classes of models tend to differ is their predictions regarding the ability to retrieve…
Descriptors: Recognition (Psychology), Bayesian Statistics, Models, Research Design
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Giuseppe Arena; Joris Mulder; Roger Th. A. J. Leenders – Sociological Methods & Research, 2024
In relational event networks, the tendency for actors to interact with each other depends greatly on the past interactions between the actors in a social network. Both the volume of past interactions and the time that has elapsed since the past interactions affect the actors' decision-making to interact with other actors in the network. Recently…
Descriptors: Bayesian Statistics, Social Networks, Memory, Decision Making
Logacev, Pavel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
A number of studies have found evidence for the so-called "ambiguity advantage," that is, faster processing of ambiguous sentences compared with unambiguous counterparts. While a number of proposals regarding the mechanism underlying this phenomenon have been made, the empirical evidence so far is far from unequivocal. It is compatible…
Descriptors: Phrase Structure, Accuracy, Ambiguity (Semantics), Sentences
Abu-Ghazalah, Rashid M.; Dubins, David N.; Poon, Gregory M. K. – Applied Measurement in Education, 2023
Multiple choice results are inherently probabilistic outcomes, as correct responses reflect a combination of knowledge and guessing, while incorrect responses additionally reflect blunder, a confidently committed mistake. To objectively resolve knowledge from responses in an MC test structure, we evaluated probabilistic models that explicitly…
Descriptors: Guessing (Tests), Multiple Choice Tests, Probability, Models
Mulder, J.; Raftery, A. E. – Sociological Methods & Research, 2022
The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC, however, is not suitable for evaluating models with order constraints on the parameters of interest. This article explores two extensions of the BIC for evaluating order-constrained models, one where a…
Descriptors: Models, Social Science Research, Programming Languages, Bayesian Statistics
Buyukatak, Emrah; Anil, Duygu – International Journal of Assessment Tools in Education, 2022
The purpose of this research was to determine classification accuracy of the factors affecting the success of students' reading skills based on PISA 2018 data by using Artificial Neural Networks, Decision Trees, K-Nearest Neighbor, and Naive Bayes data mining classification methods and to examine the general characteristics of success groups. In…
Descriptors: Classification, Accuracy, Reading Tests, Achievement Tests
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Fujimoto, Ken A. – Journal of Educational Measurement, 2020
Multilevel bifactor item response theory (IRT) models are commonly used to account for features of the data that are related to the sampling and measurement processes used to gather those data. These models conventionally make assumptions about the portions of the data structure that represent these features. Unfortunately, when data violate these…
Descriptors: Bayesian Statistics, Item Response Theory, Achievement Tests, Secondary School Students
Jin, Kuan-Yu; Wu, Yi-Jhen; Chen, Hui-Fang – Journal of Educational and Behavioral Statistics, 2022
For surveys of complex issues that entail multiple steps, multiple reference points, and nongradient attributes (e.g., social inequality), this study proposes a new multiprocess model that integrates ideal-point and dominance approaches into a treelike structure (IDtree). In the IDtree, an ideal-point approach describes an individual's attitude…
Descriptors: Likert Scales, Item Response Theory, Surveys, Responses
Lúcio, Patrícia Silva; Vandekerckhove, Joachim; Polanczyk, Guilherme V.; Cogo-Moreira, Hugo – Journal of Psychoeducational Assessment, 2021
The present study compares the fit of two- and three-parameter logistic (2PL and 3PL) models of item response theory in the performance of preschool children on the Raven's Colored Progressive Matrices. The test of Raven is widely used for evaluating nonverbal intelligence of factor g. Studies comparing models with real data are scarce on the…
Descriptors: Guessing (Tests), Item Response Theory, Test Validity, Preschool Children
Trendtel, Matthias; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
A multidimensional Bayesian item response model is proposed for modeling item position effects. The first dimension corresponds to the ability that is to be measured; the second dimension represents a factor that allows for individual differences in item position effects called persistence. This model allows for nonlinear item position effects on…
Descriptors: Bayesian Statistics, Item Response Theory, Test Items, Test Format
Peralta, Montserrat; Alarcon, Rosa; Pichara, Karim E.; Mery, Tomas; Cano, Felipe; Bozo, Jorge – IEEE Transactions on Learning Technologies, 2018
Educational resources can be easily found on the Web. Most search engines base their algorithms on a resource's text or popularity, requiring teachers to navigate the results until they find an appropriate resource. This makes searching for resources a tedious and cumbersome task. Specialized repositories contain resources that are annotated with…
Descriptors: Educational Resources, Metadata, Foreign Countries, Bayesian Statistics