NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Young, Nicholas T.; Caballero, Marcos D. – Journal of Educational Data Mining, 2021
We encounter variables with little variation often in educational data mining (EDM) due to the demographics of higher education and the questions we ask. Yet, little work has examined how to analyze such data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and random forest. We systematically varied the…
Descriptors: Prediction, Models, Learning Analytics, Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maslo, Irina – Journal of Educational Sciences, 2021
In the context of the smart specialization of national economies and the creation of smart societies in the digital age, general, vocational, adult, and higher education reforms have a decisive horizontal effect on the transition to smart education. A smart pedagogical approach that has evolved in recent years is frequently seen as merely focused…
Descriptors: Educational Philosophy, Educational Change, Educational Technology, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Mansouri, Taha; ZareRavasan, Ahad; Ashrafi, Amir – Journal of Information Technology Education: Research, 2021
Aim/Purpose: This research aims to present a brand-new approach for student performance prediction using the Learning Fuzzy Cognitive Map (LFCM) approach. Background: Predicting student academic performance has long been an important research topic in many academic disciplines. Different mathematical models have been employed to predict student…
Descriptors: Cognitive Mapping, Models, Prediction, Performance Factors
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Farrow, Elaine; Moore, Johanna D.; Gaševic, Dragan – Journal of Learning Analytics, 2022
By participating in asynchronous course discussion forums, students can work together to refine their ideas and construct knowledge collaboratively. Typically, some messages simply repeat or paraphrase course content, while others bring in new material, demonstrate reasoning, integrate concepts, and develop solutions. Through the messages they…
Descriptors: Asynchronous Communication, Computer Mediated Communication, Group Discussion, Learning Analytics
Steven Moore; John Stamper; Norman Bier; Mary Jean Blink – Grantee Submission, 2020
In this paper we show how we can utilize human-guided machine learning techniques coupled with a learning science practitioner interface (DataShop) to identify potential improvements to existing educational technology. Specifically, we provide an interface for the classification of underlying Knowledge Components (KCs) to better model student…
Descriptors: Learning Analytics, Educational Improvement, Classification, Learning Processes