Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 19 |
Descriptor
Bayesian Statistics | 20 |
Identification | 20 |
Models | 20 |
Probability | 9 |
Cognitive Processes | 5 |
Decision Making | 5 |
Comparative Analysis | 4 |
Markov Processes | 4 |
Prediction | 4 |
Simulation | 4 |
Correlation | 3 |
More ▼ |
Source
Author
Brunskill, Emma | 2 |
Chater, Nick | 2 |
Doroudi, Shayan | 2 |
Griffiths, Thomas L. | 2 |
Hong Zhang | 2 |
Norris, Dennis | 2 |
Saijun Zhao | 2 |
Zhiyong Zhang | 2 |
Almond, Russell G. | 1 |
Brady, Timothy F. | 1 |
Brown, Gordon D. A. | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 12 |
Reports - Evaluative | 3 |
Speeches/Meeting Papers | 3 |
Dissertations/Theses -… | 2 |
Reports - Descriptive | 2 |
Opinion Papers | 1 |
Education Level
Elementary Education | 2 |
Grade 4 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Secondary Education | 1 |
Audience
Location
Indiana | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Jing Lu; Chun Wang; Ningzhong Shi – Grantee Submission, 2023
In high-stakes, large-scale, standardized tests with certain time limits, examinees are likely to engage in either one of the three types of behavior (e.g., van der Linden & Guo, 2008; Wang & Xu, 2015): solution behavior, rapid guessing behavior, and cheating behavior. Oftentimes examinees do not always solve all items due to various…
Descriptors: High Stakes Tests, Standardized Tests, Guessing (Tests), Cheating
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Fox, Jean-Paul; Marianti, Sukaesi – Journal of Educational Measurement, 2017
Response accuracy and response time data can be analyzed with a joint model to measure ability and speed of working, while accounting for relationships between item and person characteristics. In this study, person-fit statistics are proposed for joint models to detect aberrant response accuracy and/or response time patterns. The person-fit tests…
Descriptors: Accuracy, Reaction Time, Statistics, Test Items
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura – Educational Assessment, 2017
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Descriptors: Models, Cognitive Processes, Elementary School Students, Grade 3
Brady, Timothy F.; Tenenbaum, Joshua B. – Psychological Review, 2013
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
Descriptors: Short Term Memory, Visual Perception, Change, Identification
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel – Psychometrika, 2011
We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…
Descriptors: Identification, Probability, Item Response Theory, Bayesian Statistics
Griffiths, Thomas L.; Chater, Nick; Norris, Dennis; Pouget, Alexandre – Psychological Bulletin, 2012
Bowers and Davis (2012) criticize Bayesian modelers for telling "just so" stories about cognition and neuroscience. Their criticisms are weakened by not giving an accurate characterization of the motivation behind Bayesian modeling or the ways in which Bayesian models are used and by not evaluating this theoretical framework against specific…
Descriptors: Bayesian Statistics, Psychology, Brain, Models
Hong, Feng – ProQuest LLC, 2009
Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…
Descriptors: Data Analysis, Bayesian Statistics, Tests, Measurement Techniques
Silbert, Noah H. – ProQuest LLC, 2009
Speech perception requires the integration of information from multiple phonetic and phonological dimensions. Numerous studies have investigated the mapping between multiple acoustic-phonetic dimensions and single phonological dimensions (e.g., spectral and temporal properties of stop consonants in voicing contrasts). Many fewer studies have…
Descriptors: Articulation (Speech), Phonetics, Acoustics, Syllables
Previous Page | Next Page ยป
Pages: 1 | 2