NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 40 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Hinterecker, Thomas; Knauff, Markus; Johnson-Laird, P. N. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Individuals draw conclusions about possibilities from assertions that make no explicit reference to them. The model theory postulates that assertions such as disjunctions refer to possibilities. Hence, a disjunction of the sort, "A or B or both," where "A" and "B" are sensible clauses, yields mental models of an…
Descriptors: Logical Thinking, Abstract Reasoning, Inferences, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lloyd, Kevin; Sanborn, Adam; Leslie, David; Lewandowsky, Stephan – Cognitive Science, 2019
Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the…
Descriptors: Short Term Memory, Bayesian Statistics, Cognitive Ability, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Douven, Igor; Mirabile, Patricia – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
There is a wealth of evidence that people's reasoning is influenced by explanatory considerations. Little is known, however, about the exact form this influence takes, for instance about whether the influence is unsystematic or because of people's following some rule. Three experiments investigate the descriptive adequacy of a precise proposal to…
Descriptors: Probability, Bayesian Statistics, Hypothesis Testing, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Dawn; Lu, Hongjing; Holyoak, Keith J. – Cognitive Science, 2017
A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…
Descriptors: Inferences, Abstract Reasoning, Learning Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Roettger, Timo B.; Franke, Michael – Cognitive Science, 2019
Intonation plays an integral role in comprehending spoken language. Listeners can rapidly integrate intonational information to predictively map a given pitch accent onto the speaker's likely referential intentions. We use mouse tracking to investigate two questions: (a) how listeners draw predictive inferences based on information from…
Descriptors: Cues, Intonation, Language Processing, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D. – Cognitive Science, 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
Descriptors: Classification, Conditioning, Inferences, Novelty (Stimulus Dimension)
Peer reviewed Peer reviewed
Direct linkDirect link
Gershman, Samuel J.; Pouncy, Hillard Thomas; Gweon, Hyowon – Cognitive Science, 2017
We routinely observe others' choices and use them to guide our own. Whose choices influence us more, and why? Prior work has focused on the effect of perceived similarity between two individuals (self and others), such as the degree of overlap in past choices or explicitly recognizable group affiliations. In the real world, however, any dyadic…
Descriptors: Social Influences, Social Cognition, Inferences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura – Educational Assessment, 2017
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Descriptors: Models, Cognitive Processes, Elementary School Students, Grade 3
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Lawrence; Pearl, Lisa – Cognitive Science, 2015
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…
Descriptors: Language Acquisition, Models, Computational Linguistics, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E. – Sociological Methods & Research, 2017
Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…
Descriptors: Bayesian Statistics, Classification, Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P. – Cognitive Science, 2015
It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…
Descriptors: Generalization, Young Children, Inferences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yildirim, Ilker; Jacobs, Robert A. – Cognition, 2013
We study people's abilities to transfer object category knowledge across visual and haptic domains. If a person learns to categorize objects based on inputs from one sensory modality, can the person categorize these same objects when the objects are perceived through another modality? Can the person categorize novel objects from the same…
Descriptors: Novelty (Stimulus Dimension), Stimuli, Infants, Visual Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
Vanpaemel, Wolf; Lee, Michael D. – Psychological Bulletin, 2012
Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…
Descriptors: Classification, Program Evaluation, Bayesian Statistics, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3