NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Andres Neyem; Luis A. Gonzalez; Marcelo Mendoza; Juan Pablo Sandoval Alcocer; Leonardo Centellas; Carlos Paredes – IEEE Transactions on Learning Technologies, 2024
Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might…
Descriptors: Computer Software, Artificial Intelligence, Intelligent Tutoring Systems, Capstone Experiences
Peer reviewed Peer reviewed
Direct linkDirect link
Emiko Tsutsumi; Yiming Guo; Ryo Kinoshita; Maomi Ueno – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Academic Ability, Intelligent Tutoring Systems, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Belda-Medina, Jose; Kokošková, Vendula – International Journal of Educational Technology in Higher Education, 2023
Recent advances in Artificial Intelligence (AI) have paved the way for the integration of text-based and voice-enabled chatbots as adaptive virtual tutors in education. Despite the increasing use of AI-powered chatbots in language learning, there is a lack of studies exploring the attitudes and perceptions of teachers and students towards these…
Descriptors: Technology Integration, Technology Uses in Education, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Byungsoo; Yu, Hangyeol; Shin, Dongmin; Choi, Youngduck – International Educational Data Mining Society, 2021
The needs for precisely estimating a student's academic performance have been emphasized with an increasing amount of attention paid to Intelligent Tutoring System (ITS). However, since labels for academic performance, such as test scores, are collected from outside of ITS, obtaining the labels is costly, leading to label-scarcity problem which…
Descriptors: Academic Achievement, Intelligent Tutoring Systems, Prediction, Scores
Michelle P. Banawan; Jinnie Shin; Tracy Arner; Renu Balyan; Walter L. Leite; Danielle S. McNamara – Grantee Submission, 2023
Academic discourse communities and learning circles are characterized by collaboration, sharing commonalities in terms of social interactions and language. The discourse of these communities is composed of jargon, common terminologies, and similarities in how they construe and communicate meaning. This study examines the extent to which discourse…
Descriptors: Algebra, Discourse Analysis, Semantics, Syntax
McNamara, Danielle S.; Roscoe, Rod; Allen, Laura; Balyan, Renu; McCarthy, Kathryn S. – Grantee Submission, 2019
Literacy is a critically important and contemporary issue for educators, scientists, and politicians. Efforts to overcome the challenges associated with illiteracy, and the subsequent development of literate societies, are closely related to those of poverty reduction and sustainable human development. In this paper, the authors examine literacy…
Descriptors: Literacy, Reading Comprehension, Language Processing, Discourse Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Suleman, Raja M.; Mizoguchi, Riichiro; Ikeda, Mitsuru – International Journal of Artificial Intelligence in Education, 2016
Negotiation mechanism using conversational agents (chatbots) has been used in Open Learner Models (OLM) to enhance learner model accuracy and provide opportunities for learner reflection. Using chatbots that allow for natural language discussions has shown positive learning gains in students. Traditional OLMs assume a learner to be able to manage…
Descriptors: Metacognition, Intelligent Tutoring Systems, Natural Language Processing, Models
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2015
This study builds upon previous work aimed at developing a student model of reading comprehension ability within the intelligent tutoring system, iSTART. Currently, the system evaluates students' self-explanation performance using a local, sentence-level algorithm and does not adapt content based on reading ability. The current study leverages…
Descriptors: Reading Comprehension, Reading Skills, Natural Language Processing, Intelligent Tutoring Systems
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2015
The tremendous effectiveness of intelligent tutoring systems is due in large part to their interactivity. However, when learners are free to choose the extent to which they interact with a tutoring system, not all learners do so actively. This paper examines a study with a natural language tutorial dialogue system for computer science, in which…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Science Education, Problem Solving
Previous Page | Next Page »
Pages: 1  |  2