Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 13 |
Descriptor
Intelligent Tutoring Systems | 14 |
Mastery Learning | 14 |
Models | 14 |
Skill Development | 7 |
Bayesian Statistics | 6 |
Mathematics Instruction | 5 |
Comparative Analysis | 4 |
Educational Technology | 4 |
Knowledge Level | 4 |
Learning Processes | 4 |
Probability | 4 |
More ▼ |
Source
International Educational… | 6 |
International Journal of… | 3 |
Cognition and Exploratory… | 1 |
Grantee Submission | 1 |
Interactive Learning… | 1 |
Journal of Artificial… | 1 |
ProQuest LLC | 1 |
Author
Eglington, Luke G. | 2 |
Heffernan, Neil T. | 2 |
Pavlik, Philip I., Jr. | 2 |
Agarwal, Deepak | 1 |
Baker, Ryan S. | 1 |
Baker, Ryan S. J. D. | 1 |
Barrus, Angela | 1 |
Beck, Joseph Barbosa | 1 |
Brunskill, Emma | 1 |
Chu, Yu | 1 |
Dailey, Matthew D. | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Speeches/Meeting Papers | 6 |
Journal Articles | 5 |
Reports - Evaluative | 2 |
Books | 1 |
Collected Works - General | 1 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Education Level
High Schools | 3 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Location
Massachusetts | 1 |
Pennsylvania | 1 |
South Carolina | 1 |
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Eglington, Luke G.; Pavlik, Philip I., Jr. – International Journal of Artificial Intelligence in Education, 2023
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Eglington, Luke G.; Pavlik, Philip I., Jr. – Grantee Submission, 2022
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Ifenthaler, Dirk, Ed.; Sampson, Demetrios G., Ed.; Isaías, Pedro, Ed. – Cognition and Exploratory Learning in the Digital Age, 2022
This book is about inclusivity and open education in the digital age. It reports the latest data on this topic from the 2021 Cognition and Exploratory Learning in the Digital Age (CELDA) conference. This annual conference focuses on challenges pertaining to the evolution of the learning process, the role of pedagogical approaches and the progress…
Descriptors: Teaching Methods, Educational Innovation, Educational Technology, Technology Uses in Education
Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken – International Educational Data Mining Society, 2015
Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…
Descriptors: Bayesian Statistics, Models, Skill Development, Intelligent Tutoring Systems
Rollinson, Joseph; Brunskill, Emma – International Educational Data Mining Society, 2015
At their core, Intelligent Tutoring Systems consist of a student model and a policy. The student model captures the state of the student and the policy uses the student model to individualize instruction. Policies require different properties from the student model. For example, a mastery threshold policy requires the student model to have a way…
Descriptors: Prediction, Models, Educational Policy, Intelligent Tutoring Systems
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Pardos, Zachary A.; Dailey, Matthew D.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
The well established, gold standard approach to finding out what works in education research is to run a randomized controlled trial (RCT) using a standard pre-test and post-test design. RCTs have been used in the intelligent tutoring community for decades to determine which questions and tutorial feedback work best. Practically speaking, however,…
Descriptors: Feedback (Response), Intelligent Tutoring Systems, Pretests Posttests, Educational Research
Barrus, Angela – ProQuest LLC, 2013
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and…
Descriptors: Learning Strategies, Independent Study, High School Students, Instructional Design
Baker, Ryan S. J. D.; Goldstein, Adam B.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
Intelligent tutors have become increasingly accurate at detecting whether a student knows a skill, or knowledge component (KC), at a given time. However, current student models do not tell us exactly at which point a KC is learned. In this paper, we present a machine-learned model that assesses the probability that a student learned a KC at a…
Descriptors: Intelligent Tutoring Systems, Mastery Learning, Probability, Knowledge Level

Montazemi, Ali R.; Wang, Feng – Journal of Artificial Intelligence in Education, 1995
Proposes a neural network model for an intelligent tutoring system featuring adaptive external control of student pacing. An experiment was conducted, and students using adaptive external pacing experienced improved mastery learning and increased motivation for time management. Contains 66 references. (JKP)
Descriptors: Computer Assisted Instruction, Experiments, Intelligent Tutoring Systems, Learning Strategies