NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Canada1
China1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia – Interactive Learning Environments, 2023
Effective analysis and demonstration of these data features is of great significance for the optimization of interactive learning environment and learning behavior. Therefore, we take the big data set of learning behavior generated by an online interactive learning environment as the research object, define the features of learning behavior, and…
Descriptors: Learning Strategies, Interaction, Educational Environment, Learning Analytics
Yingbo Ma – ProQuest LLC, 2023
Collaborative learning provides learners with significant opportunities to collaborate on solving problems and creating better products. There has been a growing utilization of adaptive and intelligent systems to support productive learning while promoting collaborative practices. One of the core capabilities of these adaptive and intelligent…
Descriptors: Cooperative Learning, Models, Interaction, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – SAGE Open, 2022
Mining problems and exploring rules are the key problems in the learning process, and also the difficulties in education big data. Therefore, taking learning behavior as the research objective, this study demonstrates the collaborative training method of multi view learning interaction process driven by big data, so as to realize the tendency…
Descriptors: Learning Analytics, Learning Processes, Cooperative Learning, Training Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Karen D.; Cock, Jade Maï; Käser, Tanja; Bumbacher, Engin – British Journal of Educational Technology, 2023
Technology-based, open-ended learning environments (OELEs) can capture detailed information of students' interactions as they work through a task or solve a problem embedded in the environment. This information, in the form of log data, has the potential to provide important insights about the practices adopted by students for scientific inquiry…
Descriptors: Data Use, Educational Environment, Science Process Skills, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Ean Teng Khor; Dave Darshan – International Journal of Information and Learning Technology, 2024
Purpose: This study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course. Design/methodology/approach: The exploration and visualisation of the…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Keskin, Sinan; Yurdugül, Halil – Journal of Educational Technology and Online Learning, 2022
This study aims to examine e-learning experiences of the learners by using learner system interaction metrics. In this context, an e-learning environment has been structured within the scope of a course. Learners interacted with learning activities and leave various traces when they interact with others, contents, and assessment tasks. Log data…
Descriptors: Electronic Learning, Learning Experience, Models, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Moubayed, Abdallah; Injadat, Mohammadnoor; Shami, Abdallah; Lutfiyya, Hanan – American Journal of Distance Education, 2020
E-learning platforms and processes face several challenges, among which is the idea of personalizing the e-learning experience and to keep students motivated and engaged. This work is part of a larger study that aims to tackle these two challenges using a variety of machine learning techniques. To that end, this paper proposes the use of k-means…
Descriptors: Learner Engagement, Electronic Learning, Individualized Instruction, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Yuhao; Li, Xihua; Cao, Yunbo; Zhao, Xuemin; Ye, Qing; Lv, Jiancheng – International Educational Data Mining Society, 2021
In educational applications, "Knowledge Tracing" (KT) has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT…
Descriptors: Online Courses, Computer Assisted Instruction, Networks, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mandalapu, Varun; Chen, Lujie Karen; Chen, Zhiyuan; Gong, Jiaqi – International Educational Data Mining Society, 2021
With the increasing adoption of Learning Management Systems (LMS) in colleges and universities, research in exploring the interaction data captured by these systems is promising in developing a better learning environment and improving teaching practice. Most of these research efforts focused on course-level variables to predict student…
Descriptors: Integrated Learning Systems, Interaction, Undergraduate Students, Minority Group Students
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Sannyuya; Peng, Xian; Cheng, Hercy N. H.; Liu, Zhi; Sun, Jianwen; Yang, Chongyang – Journal of Educational Computing Research, 2019
Course reviews, which is designed as an interactive feedback channel in Massive Open Online Courses, has promoted the generation of large-scale text comments. These data, which contain not only learners' concerns, opinions and feelings toward courses, instructors, and platforms but also learners' interactions (e.g., post, reply), are generally…
Descriptors: Course Evaluation, Online Courses, Student Attitudes, Course Content
Peer reviewed Peer reviewed
Direct linkDirect link
Ifenthaler, Dirk, Ed.; Sampson, Demetrios G., Ed.; Isaías, Pedro, Ed. – Cognition and Exploratory Learning in the Digital Age, 2022
This book is about inclusivity and open education in the digital age. It reports the latest data on this topic from the 2021 Cognition and Exploratory Learning in the Digital Age (CELDA) conference. This annual conference focuses on challenges pertaining to the evolution of the learning process, the role of pedagogical approaches and the progress…
Descriptors: Teaching Methods, Educational Innovation, Educational Technology, Technology Uses in Education