NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Robert B. Olsen; Larry L. Orr; Stephen H. Bell; Elizabeth Petraglia; Elena Badillo-Goicoechea; Atsushi Miyaoka; Elizabeth A. Stuart – Journal of Research on Educational Effectiveness, 2024
Multi-site randomized controlled trials (RCTs) provide unbiased estimates of the average impact in the study sample. However, their ability to accurately predict the impact for individual sites outside the study sample, to inform local policy decisions, is largely unknown. To extend prior research on this question, we analyzed six multi-site RCTs…
Descriptors: Accuracy, Predictor Variables, Randomized Controlled Trials, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Descriptors: Intervention, Memory, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Society for Research on Educational Effectiveness, 2013
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
Descriptors: Research Design, Effect Size, Intervention, Statistical Analysis
Rindskopf, David; Shadish, William; Hedges, Larry – Society for Research on Educational Effectiveness, 2012
Data from single case designs (SCDs) have traditionally been analyzed by visual inspection rather than statistical models. As a consequence, effect sizes have been of little interest. Lately, some effect-size estimators have been proposed, but most are either (i) nonparametric, and/or (ii) based on an analogy incompatible with effect sizes from…
Descriptors: Intervention, Effect Size, Bayesian Statistics, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Kilchan; Seltzer, Michael – Journal of Educational and Behavioral Statistics, 2010
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…
Descriptors: Simulation, Computation, Models, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hoffman, Bobby; Schraw, Gregory – Educational Psychologist, 2010
The purpose of this article is to clarify conceptions, definitions, and applications of learning and problem-solving efficiency. Conceptions of efficiency vary within the field of educational psychology, and there is little consensus as to how to define, measure, and interpret the efficiency construct. We compare three diverse models that differ…
Descriptors: Educational Psychology, Efficiency, Problem Solving, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Dagne, Getachew A.; Brown, C. Hendricks; Howe, George W. – Journal of Educational and Behavioral Statistics, 2003
Intervention studies often rely on microcoded data of social interactions to provide evidence of change due to development or treatment. Traditionally these data have been collapsed into small contingency tables. Such an approach can introduce spurious findings. Instead of treating each unit's contingency table independently, or collapsing the…
Descriptors: Statistical Analysis, Bayesian Statistics, Intervention, Unemployment
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring