NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jared P. Canright; Suzanne White Brahmia – Physical Review Physics Education Research, 2024
We report on a study of the effects of laboratory activities that model fictitious laws of physics in a virtual reality environment on (i) students' epistemology about the role of experimental physics in class and in the world; (ii) students' self-efficacy; and (iii) the quality of student engagement with the lab activities. We create…
Descriptors: Physics, Science Instruction, Self Efficacy, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatmaryanti, Siska Desy; Pratiwi, Umi; Akhdinirwanto, Raden Wakhid; Sulisworo, Dwi – International Journal of Evaluation and Research in Education, 2022
Comprehensive monitoring in virtual laboratory learning needs a task model. This model was design based on inquiry skills, social and scientific communication of prospective physics teachers. The development of these three skills is still a problem in recent research on virtual laboratory learning. This research was research and development (RD)…
Descriptors: Foreign Countries, College Faculty, Physics, Preservice Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wong, Wing-Kwong; Chen, Kai-Ping; Chang, Hong-Ming – Journal of Baltic Science Education, 2020
This research aimed to explore the effects of a virtual lab (VL) and a Microcomputer-based Lab (MBL) on students' performance in scientific modeling. A web-based virtual lab and a low-cost MBL were proposed to help first-year engineering students build scientific models. Empirical research was done in a slope motion experiment. The participants…
Descriptors: Foreign Countries, Science Laboratories, Computer Simulation, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Euphrasio, P. C. S.; Faria, L. A.; Germano, J. S. E.; Hirata, Daisy – IEEE Transactions on Education, 2020
This article describes the implementation of a remote access experiment, called Web-lab 1553B (Digital Data Bus Lab), for courses in the Avionics Systems Program. Its main objective is to present a study about the use of two rotation model subgroups: 1) rotation laboratory and 2) station rotation. In the "rotation laboratory" subgroup,…
Descriptors: Computer Simulation, Educational Technology, Electronic Learning, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Blikstein, Paulo; Fuhrmann, Tamar; Salehi, Shima – Journal of Science Education and Technology, 2016
In this paper, we investigate an approach to supporting students' learning in science through a combination of physical experimentation and virtual modeling. We present a study that utilizes a scientific inquiry framework, which we call "bifocal modeling," to link student-designed experiments and computer models in real time. In this…
Descriptors: High School Students, Secondary School Science, Science Education, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gras, Anna; Cañadas, Juan Carlos; Ginovart, Marta – Journal of Technology and Science Education, 2013
This work addresses and aims to fulfill a very clear need in teaching biosystem engineering. When introducing students to the complexity of soil processes, one of the frustrations that teachers often experience is the impossibility to demonstrate practically, in the lab, some of the concepts and processes discussed in class. Either the experiments…
Descriptors: Computer Simulation, Engineering Education, Science Experiments, Soil Science
Peer reviewed Peer reviewed
Direct linkDirect link
Samon, Sigal; Levy, Sharona T. – Science Education, 2017
The study explores how a complexity approach empowers science learning. A complexity approach represents systems as many interacting entities. The construct of micro-macro compatibility is introduced, the degree of similarity between behaviors at the micro- and macro-levels of the system. Seventh-grade students' learning about gases was studied…
Descriptors: Difficulty Level, Systems Approach, Science Education, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Machet, Tania; Lowe, David; Gutl, Christian – European Journal of Engineering Education, 2012
This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of…
Descriptors: Laboratory Experiments, Teaching Methods, Models, Theory Practice Relationship
Peer reviewed Peer reviewed
Direct linkDirect link
Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H. – Advances in Physiology Education, 2011
As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…
Descriptors: Undergraduate Students, Mathematical Models, Student Interests, Laboratories
Peer reviewed Peer reviewed
Forinash, Kyle; Wisman, Raymond – T.H.E. Journal, 2001
Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)
Descriptors: Computer Simulation, Distance Education, Instructional Effectiveness, Laboratory Experiments
Peer reviewed Peer reviewed
Smith, P. R.; Pollard, D. – Computers and Education, 1986
Discusses role of computer simulation in complementing and extending conventional components of undergraduate engineering education process in United Kingdom universities and polytechnics. Aspects of computer-based learning are reviewed (laboratory simulation, lecture and tutorial support, inservice teacher education) with reference to programs in…
Descriptors: Computer Assisted Instruction, Computer Simulation, Computer Software, Engineering Education
Peer reviewed Peer reviewed
Horvath, Otto; Papp, Sandor – Journal of Chemical Education, 1988
States that if photochemical reactions can be followed spectrophotometrically, reactivities can be estimated by evaluating data from only one curve. Studies such a system using computerized evaluation and simulation. Uses chlorocuprate(II) complexes in acetonitrile solutions for the model systems. (MVL)
Descriptors: Chemical Analysis, Chemical Equilibrium, Chemical Reactions, Chemistry
Previous Page | Next Page »
Pages: 1  |  2