Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
ProQuest LLC | 3 |
First Language | 2 |
Brain and Language | 1 |
Cognition | 1 |
Cognitive Science | 1 |
Developmental Science | 1 |
Education and Information… | 1 |
Author
Alex Warstadt | 1 |
Caplan, Spencer | 1 |
Chater, Nick | 1 |
Dennis, Simon | 1 |
Dominey, Peter Ford | 1 |
Edelman, Shimon | 1 |
Frank, Michael C. | 1 |
Guozhu Ding | 1 |
Hao Wu | 1 |
Hoen, Michel | 1 |
Hsu, Anne S. | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Dissertations/Theses -… | 3 |
Reports - Evaluative | 3 |
Reports - Research | 3 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ryan Daniel Budnick – ProQuest LLC, 2023
The past thirty years have shown a rise in models of language acquisition in which the state of the learner is characterized as a probability distribution over a set of non-stochastic grammars. In recent years, increasingly powerful models have been constructed as earlier models have failed to generalize well to increasingly complex and realistic…
Descriptors: Grammar, Feedback (Response), Algorithms, Computational Linguistics
Unger, Layla; Yim, Hyungwook; Savic, Olivera; Dennis, Simon; Sloutsky, Vladimir M. – Developmental Science, 2023
Recent years have seen a flourishing of Natural Language Processing models that can mimic many aspects of human language fluency. These models harness a simple, decades-old idea: It is possible to learn a lot about word meanings just from exposure to language, because words similar in meaning are used in language in similar ways. The successes of…
Descriptors: Natural Language Processing, Language Usage, Vocabulary Development, Linguistic Input
Hao Wu; Shan Li; Ying Gao; Jinta Weng; Guozhu Ding – Education and Information Technologies, 2024
Natural language processing (NLP) has captivated the attention of educational researchers over the past three decades. In this study, a total of 2,480 studies were retrieved through a comprehensive literature search. We used neural topic modeling and pre-trained language modeling to explore the research topics pertaining to the application of NLP…
Descriptors: Natural Language Processing, Educational Research, Research Design, Educational Trends
Alex Warstadt – ProQuest LLC, 2022
Data-driven learning uncontroversially plays a role in human language acquisition--how large a role is a matter of much debate. The success of artificial neural networks in NLP in recent years calls for a re-evaluation of our understanding of the possibilities for learning grammar from data alone. This dissertation argues the case for using…
Descriptors: Language Acquisition, Artificial Intelligence, Computational Linguistics, Ethics
Mahowald, Kyle; Kachergis, George; Frank, Michael C. – First Language, 2020
Ambridge calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec -- which have been extremely successful in modern natural language processing (NLP) applications -- count? Although these models often have ample parametric complexity to store exemplars from their training data, they also…
Descriptors: Models, Language Processing, Computational Linguistics, Language Acquisition
Schuler, Kathryn D.; Kodner, Jordan; Caplan, Spencer – First Language, 2020
In 'Against Stored Abstractions,' Ambridge uses neural and computational evidence to make his case against abstract representations. He argues that storing only exemplars is more parsimonious -- why bother with abstraction when exemplar models with on-the-fly calculation can do everything abstracting models can and more -- and implies that his…
Descriptors: Language Processing, Language Acquisition, Computational Linguistics, Linguistic Theory
Kolodny, Oren; Lotem, Arnon; Edelman, Shimon – Cognitive Science, 2015
We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given…
Descriptors: Grammar, Natural Language Processing, Computer Mediated Communication, Graphs
Kazemzadeh, Abe – ProQuest LLC, 2013
This dissertation studies how people describe emotions with language and how computers can simulate this descriptive behavior. Although many non-human animals can express their current emotions as social signals, only humans can communicate about emotions symbolically. This symbolic communication of emotion allows us to talk about emotions that we…
Descriptors: Natural Language Processing, Psychological Patterns, Computer Simulation, Discourse Analysis
Hsu, Anne S.; Chater, Nick; Vitanyi, Paul M. B. – Cognition, 2011
There is much debate over the degree to which language learning is governed by innate language-specific biases, or acquired through cognition-general principles. Here we examine the probabilistic language acquisition hypothesis on three levels: We outline a novel theoretical result showing that it is possible to learn the exact "generative model"…
Descriptors: Linguistics, Prediction, Natural Language Processing, Language Acquisition
Madden, Carol; Hoen, Michel; Dominey, Peter Ford – Brain and Language, 2010
This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…
Descriptors: Sentences, Simulation, Interaction, Language Processing