NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 68 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Hyeon-Ah Kang; Adam Sales; Tiffany A. Whittaker – Grantee Submission, 2023
Increasing use of intelligent tutoring systems in education calls for analytic methods that can unravel students' learning behaviors. In this study, we explore a latent variable modeling approach for tracking learning flow during computer-interactive artificial tutoring. The study considers three models that give discrete profiles of a latent…
Descriptors: Intelligent Tutoring Systems, Algebra, Educational Technology, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Mao, Shun; Zhan, Jieyu; Wang, Yizhao; Jiang, Yuncheng – IEEE Transactions on Learning Technologies, 2023
For offering adaptive learning to learners in intelligent tutoring systems, one of the fundamental tasks is knowledge tracing (KT), which aims to assess learners' learning states and make prediction for future performance. However, there are two crucial issues in deep learning-based KT models. First, the knowledge concepts are used to predict…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Prediction, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Eglington, Luke G.; Pavlik, Philip I., Jr. – International Journal of Artificial Intelligence in Education, 2023
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Pavlik, Philip I., Jr.; Zhang, Liang – Grantee Submission, 2022
A longstanding goal of learner modeling and educational data mining is to improve the domain model of knowledge that is used to make inferences about learning and performance. In this report we present a tool for finding domain models that is built into an existing modeling framework, logistic knowledge tracing (LKT). LKT allows the flexible…
Descriptors: Models, Regression (Statistics), Intelligent Tutoring Systems, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Jesús Pérez; Eladio Dapena; Jose Aguilar – Education and Information Technologies, 2024
In tutoring systems, a pedagogical policy, which decides the next action for the tutor to take, is important because it determines how well students will learn. An effective pedagogical policy must adapt its actions according to the student's features, such as knowledge, error patterns, and emotions. For adapting difficulty, it is common to…
Descriptors: Feedback (Response), Intelligent Tutoring Systems, Reinforcement, Difficulty Level
Eglington, Luke G.; Pavlik, Philip I., Jr. – Grantee Submission, 2022
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wijaya, Adi; Setiawan, Noor Akhmad; Shapiai, Mohd Ibrahim – Electronic Journal of e-Learning, 2023
This study aims to provide a comprehensive overview of the current state and potential future research in learning style detection. With the increasing number and diversity of research in this area, a quantitative approach is necessary to map out current themes and identify potential areas for future research. To achieve this goal, a bibliometric…
Descriptors: Bibliometrics, Cognitive Style, Diagnostic Tests, Content Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pandey, Shalini; Karypis, George – International Educational Data Mining Society, 2019
Knowledge tracing is the task of modeling each student's mastery of knowledge concepts (KCs) as (s)he engages with a sequence of learning activities. Each student's knowledge is modeled by estimating the performance of the student on the learning activities. It is an important research area for providing a personalized learning platform to…
Descriptors: Learning Processes, Databases, Intelligent Tutoring Systems, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rho, Jihyun; Rau, Martina A.; Van Veen, Barry D. – International Educational Data Mining Society, 2022
Instruction in many STEM domains heavily relies on visual representations, such as graphs, figures, and diagrams. However, students who lack representational competencies do not benefit from these visual representations. Therefore, students must learn not only content knowledge but also representational competencies. Further, as learning…
Descriptors: Learning Processes, Models, Introductory Courses, Engineering Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Danial Hooshyar; Nour El Mawas; Yeongwook Yang – Knowledge Management & E-Learning, 2024
The use of learner modelling approaches is critical for providing adaptive support in educational computer games, with predictive learner modelling being among the key approaches. While adaptive supports have been shown to improve the effectiveness of educational games, improperly customized support can have negative effects on learning outcomes.…
Descriptors: Artificial Intelligence, Course Content, Tests, Scores
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5