Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 14 |
Descriptor
Longitudinal Studies | 14 |
Markov Processes | 14 |
Models | 14 |
Bayesian Statistics | 8 |
Monte Carlo Methods | 7 |
Computation | 4 |
Data Analysis | 3 |
Surveys | 3 |
Academic Achievement | 2 |
Attitude Measures | 2 |
Children | 2 |
More ▼ |
Source
Author
Hung, Lai-Fa | 2 |
Wang, Shiyu | 2 |
Zhang, Zhiyong | 2 |
Attewell, Paul | 1 |
Botelho, Anthony F. | 1 |
Brooks, Christopher | 1 |
Chen, Jianshen | 1 |
Croteau, Ethan | 1 |
Culpepper, Steven | 1 |
Culpepper, Steven Andrew | 1 |
Dey, Dipak K. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 5 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 2 |
Education Level
Elementary Education | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
Adult Education | 1 |
Early Childhood Education | 1 |
Grade 1 | 1 |
Kindergarten | 1 |
Middle Schools | 1 |
Primary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 2 |
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Witteveen, Dirk; Attewell, Paul – Research in Higher Education, 2017
Higher education in America is characterized by widespread access to college but low rates of completion, especially among undergraduates at less selective institutions. We analyze longitudinal transcript data to examine processes leading to graduation, using Hidden Markov modeling. We identify several latent states that are associated with…
Descriptors: Markov Processes, Higher Education, Longitudinal Studies, Statistical Analysis
Gardner, Josh; Brooks, Christopher; Li, Warren – Journal of Learning Analytics, 2018
In this paper, we evaluate the complete undergraduate co-enrollment network over a decade of education at a large American public university. We provide descriptive and exploratory analyses of the network, demonstrating that the co-enrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that…
Descriptors: Markov Processes, Classification, Undergraduate Students, Grade Point Average
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Kaplan, David; Chen, Jianshen – Society for Research on Educational Effectiveness, 2013
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
Descriptors: Bayesian Statistics, Models, Probability, Monte Carlo Methods
Hung, Lai-Fa; Wang, Wen-Chung – Journal of Educational and Behavioral Statistics, 2012
In the human sciences, ability tests or psychological inventories are often repeatedly conducted to measure growth. Standard item response models do not take into account possible autocorrelation in longitudinal data. In this study, the authors propose an item response model to account for autocorrelation. The proposed three-level model consists…
Descriptors: Item Response Theory, Correlation, Models, Longitudinal Studies
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Tchumtchoua, Sylvie; Dey, Dipak K. – Psychometrika, 2012
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Descriptors: Factor Analysis, Bayesian Statistics, Behavioral Sciences, Social Sciences
Hung, Lai-Fa – Multivariate Behavioral Research, 2010
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Descriptors: Longitudinal Studies, Data, Models, Markov Processes
Mark, Kevin; Karmel, Tom – National Centre for Vocational Education Research (NCVER), 2010
This paper estimates vocational education and training (VET) course-completion rates, in order to fill a gap in performance measures for the VET sector. The technique the authors use is to track all VET course enrolments within a three-year window, centred on the year of interest. Then, using an absorbing Markov chain model for a VET course…
Descriptors: Markov Processes, Qualifications, Vocational Education, Models
Lockwood, J. R.; McCaffrey, Daniel F. – National Center on Performance Incentives, 2008
This paper develops a model for longitudinal student achievement data designed to estimate heterogeneity in teacher effects across students of different achievement levels. The model specifies interactions between teacher effects and students' predicted scores on a test, estimating both average effects of individual teachers and interaction terms…
Descriptors: Classes (Groups of Students), Computation, Academic Achievement, Longitudinal Studies