Publication Date
In 2025 | 3 |
Since 2024 | 16 |
Since 2021 (last 5 years) | 66 |
Since 2016 (last 10 years) | 163 |
Since 2006 (last 20 years) | 286 |
Descriptor
Source
Author
Koedinger, Kenneth R. | 11 |
Aleven, Vincent | 8 |
Baker, Ryan S. | 8 |
McLaren, Bruce M. | 8 |
Stamper, John | 7 |
Heffernan, Neil T. | 6 |
Albacete, Patricia | 5 |
Bull, Susan | 5 |
Chi, Min | 5 |
Gross, Markus | 5 |
Jordan, Pamela | 5 |
More ▼ |
Publication Type
Education Level
Audience
Location
China | 6 |
Massachusetts | 6 |
Pennsylvania | 6 |
Greece | 5 |
Taiwan | 5 |
Brazil | 4 |
France | 4 |
Australia | 3 |
Canada | 3 |
Florida | 3 |
North Carolina | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 2 |
Florida Comprehensive… | 1 |
Gates MacGinitie Reading Tests | 1 |
Program for International… | 1 |
Rosenberg Self Esteem Scale | 1 |
Test of English for… | 1 |
What Works Clearinghouse Rating
Zhu, Xinhua; Wu, Han; Zhang, Lanfang – IEEE Transactions on Learning Technologies, 2022
Automatic short-answer grading (ASAG) is a key component of intelligent tutoring systems. Deep learning is an advanced method to deal with recognizing textual entailment tasks in an end-to-end manner. However, deep learning methods for ASAG still remain challenging mainly because of the following two major reasons: (1) high-precision scoring…
Descriptors: Intelligent Tutoring Systems, Grading, Automation, Models
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Liqing Qiu; Lulu Wang – IEEE Transactions on Education, 2025
In recent years, knowledge tracing (KT) within intelligent tutoring systems (ITSs) has seen rapid development. KT aims to assess a student's knowledge state based on past performance and predict the correctness of the next question. Traditional KT often treats questions with different difficulty levels of the same concept as identical…
Descriptors: Intelligent Tutoring Systems, Technology Uses in Education, Questioning Techniques, Student Evaluation
MacLellan, Christopher J.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems are effective for improving students' learning outcomes (Pane et al. 2013; Koedinger and Anderson, "International Journal of Artificial Intelligence in Education," 8, 1-14, 1997; Bowen et al. "Journal of Policy Analysis and Management," 1, 94-111 2013). However, constructing tutoring systems that…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Instructional Design
Yu Lu; Deliang Wang; Penghe Chen; Zhi Zhang – IEEE Transactions on Learning Technologies, 2024
Amid the rapid evolution of artificial intelligence (AI), the intricate model structures and opaque decision-making processes of AI-based systems have raised the trustworthy issues in education. We, therefore, first propose a novel three-layer knowledge tracing model designed to address trustworthiness for an intelligent tutoring system. Each…
Descriptors: Models, Intelligent Tutoring Systems, Artificial Intelligence, Technology Uses in Education
Huang, Tao; Hu, Shengze; Yang, Huali; Geng, Jing; Liu, Sannyuya; Zhang, Hao; Yang, Zongkai – IEEE Transactions on Learning Technologies, 2023
The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services, such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which…
Descriptors: Educational Technology, Prediction, Electronic Learning, Intelligent Tutoring Systems
Galafassi, Cristiano; Galafassi, Fabiane Flores Penteado; Vicari, Rosa Maria; Reategui, Eliseo Berni – International Journal of Artificial Intelligence in Education, 2023
This work presents the intelligent tutoring system, EvoLogic, developed to assist students in problems of natural production in propositional logic. EvoLogic has been modeled as a multiagent system composed of three autonomous agents: interface, pedagogical and specialist agents. It supports pedagogical strategies inspired by the theory of…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Models, Teaching Methods
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Felipe de Morais; Patricia A. Jaques – IEEE Transactions on Learning Technologies, 2024
Emotion detection through sensors is intrusive and expensive, making it impractical for many educational settings. As an alternative, sensor-free affect detection, which relies solely on interaction log data for machine learning models, has been explored. However, sensor-free emotion detectors have not significantly improved performance when…
Descriptors: Psychological Patterns, Personality Traits, Artificial Intelligence, Models
Hyeon-Ah Kang; Adam Sales; Tiffany A. Whittaker – Grantee Submission, 2023
Increasing use of intelligent tutoring systems in education calls for analytic methods that can unravel students' learning behaviors. In this study, we explore a latent variable modeling approach for tracking learning flow during computer-interactive artificial tutoring. The study considers three models that give discrete profiles of a latent…
Descriptors: Intelligent Tutoring Systems, Algebra, Educational Technology, Learning Processes
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2021
Predicting student problem-solving strategies is a complex problem but one that can significantly impact automated instruction systems since they can adapt or personalize the system to suit the learner. While for small datasets, learning experts may be able to manually analyze data to infer student strategies, for large datasets, this approach is…
Descriptors: Prediction, Problem Solving, Intelligent Tutoring Systems, Learning Strategies
Nicolas J. Tanchuk; Rebecca M. Taylor – Educational Theory, 2025
AI tutors are promised to expand access to personalized learning, improving student achievement and addressing disparities in resources available to students across socioeconomic contexts. The rapid development and introduction of AI tutors raises fundamental questions of epistemic trust in education. What criteria should guide students' critical…
Descriptors: Individualized Instruction, Artificial Intelligence, Technology Uses in Education, Tutors
Sha, Lele; Rakovic, Mladen; Lin, Jionghao; Guan, Quanlong; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Chen, Guanliang – IEEE Transactions on Learning Technologies, 2023
In online courses, discussion forums play a key role in enhancing student interaction with peers and instructors. Due to large enrolment sizes, instructors often struggle to respond to students in a timely manner. To address this problem, both traditional machine learning (ML) (e.g., Random Forest) and deep learning (DL) approaches have been…
Descriptors: Computer Mediated Communication, Discussion Groups, Artificial Intelligence, Intelligent Tutoring Systems