Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 23 |
Descriptor
Bayesian Statistics | 27 |
Models | 27 |
Multivariate Analysis | 27 |
Computation | 8 |
Item Response Theory | 7 |
Simulation | 7 |
Regression (Statistics) | 6 |
Classification | 5 |
Correlation | 5 |
Data Analysis | 5 |
Monte Carlo Methods | 5 |
More ▼ |
Source
Author
Mislevy, Robert J. | 2 |
Andrade, Alejandro | 1 |
Avetisyan, Marianna | 1 |
Ayers, Elizabeth | 1 |
Barnes, Tiffany, Ed. | 1 |
Bates, Marsha E. | 1 |
Behrens, John T. | 1 |
Benson, Martin | 1 |
Blackwell, Matthew | 1 |
Calico, Tiago | 1 |
Carter, Olivia | 1 |
More ▼ |
Publication Type
Education Level
High Schools | 3 |
Secondary Education | 3 |
Higher Education | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 10 | 1 |
Grade 12 | 1 |
Grade 3 | 1 |
More ▼ |
Audience
Researchers | 2 |
Practitioners | 1 |
Location
Australia | 1 |
Czech Republic | 1 |
Finland | 1 |
Iowa | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
Spain | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Education Longitudinal Study… | 1 |
Massachusetts Comprehensive… | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Cerullo, Enzo; Jones, Hayley E.; Carter, Olivia; Quinn, Terry J.; Cooper, Nicola J.; Sutton, Alex J. – Research Synthesis Methods, 2022
Standard methods for the meta-analysis of medical tests, without assuming a gold standard, are limited to dichotomous data. Multivariate probit models are used to analyse correlated dichotomous data, and can be extended to model ordinal data. Within the context of an imperfect gold standard, they have previously been used for the analysis of…
Descriptors: Meta Analysis, Test Format, Medicine, Standards
Fujimoto, Ken A. – Educational and Psychological Measurement, 2019
Advancements in item response theory (IRT) have led to models for dual dependence, which control for cluster and method effects during a psychometric analysis. Currently, however, this class of models does not include one that controls for when the method effects stem from two method sources in which one source functions differently across the…
Descriptors: Bayesian Statistics, Item Response Theory, Psychometrics, Models
List, Marit Kristine; Köller, Olaf; Nagy, Gabriel – Educational and Psychological Measurement, 2019
Tests administered in studies of student achievement often have a certain amount of not-reached items (NRIs). The propensity for NRIs may depend on the proficiency measured by the test and on additional covariates. This article proposes a semiparametric model to study such relationships. Our model extends Glas and Pimentel's item response theory…
Descriptors: Educational Assessment, Item Response Theory, Multivariate Analysis, Test Items
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R. – Research Synthesis Methods, 2015
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…
Descriptors: Multivariate Analysis, Meta Analysis, Data Analysis, Correlation
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V. – Journal of Learning Analytics, 2017
Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…
Descriptors: Measurement, Interaction, Models, Educational Environment
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Kaplan, David; Keller, Bryan – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…
Descriptors: Multivariate Analysis, Sample Size, Correlation, Models
Previous Page | Next Page »
Pages: 1 | 2