Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 30 |
| Since 2017 (last 10 years) | 61 |
| Since 2007 (last 20 years) | 104 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
Location
| Germany | 4 |
| Netherlands | 4 |
| Australia | 3 |
| Brazil | 3 |
| Pennsylvania | 3 |
| Spain | 3 |
| United Kingdom | 3 |
| France | 2 |
| Israel | 2 |
| South Korea | 2 |
| United States | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
John Hollander; Andrew Olney – Cognitive Science, 2024
Recent investigations on how people derive meaning from language have focused on task-dependent shifts between two cognitive systems. The symbolic (amodal) system represents meaning as the statistical relationships between words. The embodied (modal) system represents meaning through neurocognitive simulation of perceptual or sensorimotor systems…
Descriptors: Verbs, Symbolic Language, Language Processing, Semantics
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Abu-Zhaya, Rana; Arnon, Inbal; Borovsky, Arielle – Cognitive Science, 2022
Meaning in language emerges from multiple words, and children are sensitive to multi-word frequency from infancy. While children successfully use cues from single words to generate linguistic predictions, it is less clear whether and how they use multi-word sequences to guide real-time language processing and whether they form predictions on the…
Descriptors: Sentences, Language Processing, Semantics, Prediction
Lixiang Yan; Lele Sha; Linxuan Zhao; Yuheng Li; Roberto Martinez-Maldonado; Guanliang Chen; Xinyu Li; Yueqiao Jin; Dragan Gaševic – British Journal of Educational Technology, 2024
Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (eg, question generation, feedback provision, and essay grading), there are…
Descriptors: Educational Technology, Artificial Intelligence, Natural Language Processing, Educational Innovation
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Jiayi Zhang; Conrad Borchers; Vincent Aleven; Ryan S. Baker – International Educational Data Mining Society, 2024
Think-aloud protocols are a common method to study self-regulated learning (SRL) during learning by problem-solving. Previous studies have manually transcribed and coded students' verbalizations, labeling the presence or absence of SRL strategies and then examined these SRL codes in relation to learning. However, the coding process is difficult to…
Descriptors: Artificial Intelligence, Technology Uses in Education, Protocol Analysis, Self Management
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Mohsen Dolatabadi – Australian Journal of Applied Linguistics, 2023
Many datasets resulting from participant ratings for word norms and also concreteness ratios are available. However, the concreteness information of infrequent words and non-words is rare. This work aims to propose a model for estimating the concreteness of infrequent and new lexicons. Here, we used Lancaster sensory-motor word norms to predict…
Descriptors: Prediction, Validity, Models, Computational Linguistics
Masato Nakamura; Shota Momma; Hiromu Sakai; Colin Phillips – Cognitive Science, 2024
Comprehenders generate expectations about upcoming lexical items in language processing using various types of contextual information. However, a number of studies have shown that argument roles do not impact neural and behavioral prediction measures. Despite these robust findings, some prior studies have suggested that lexical prediction might be…
Descriptors: Diagnostic Tests, Nouns, Language Processing, Verbs
van Schijndel, Marten; Linzen, Tal – Cognitive Science, 2021
The disambiguation of a syntactically ambiguous sentence in favor of a less preferred parse can lead to slower reading at the disambiguation point. This phenomenon, referred to as a garden-path effect, has motivated models in which readers initially maintain only a subset of the possible parses of the sentence, and subsequently require…
Descriptors: Syntax, Ambiguity (Semantics), Reading Processes, Linguistic Theory
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Emerson, Andrew; Min, Wookhee; Azevedo, Roger; Lester, James – British Journal of Educational Technology, 2023
Game-based learning environments hold significant promise for facilitating learning experiences that are both effective and engaging. To support individualised learning and support proactive scaffolding when students are struggling, game-based learning environments should be able to accurately predict student knowledge at early points in students'…
Descriptors: Game Based Learning, Natural Language Processing, Prediction, Student Evaluation

Peer reviewed
Direct link
