Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 18 |
Descriptor
Models | 22 |
Pattern Recognition | 22 |
Prediction | 22 |
Data Analysis | 8 |
Foreign Countries | 6 |
Information Retrieval | 6 |
College Students | 5 |
At Risk Students | 4 |
Cognitive Processes | 4 |
Identification | 4 |
Probability | 4 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 18 |
Reports - Research | 9 |
Reports - Descriptive | 6 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Collected Works - Proceedings | 1 |
Guides - Classroom - Teacher | 1 |
Information Analyses | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 9 |
Postsecondary Education | 5 |
Adult Education | 2 |
Middle Schools | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Junior High Schools | 1 |
Secondary Education | 1 |
Audience
Practitioners | 1 |
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
An, Weihua – Sociological Methods & Research, 2023
In this article, I present a new multivariate regression model for analyzing outcomes with network dependence. The model is capable to account for two types of outcome dependence including the mean dependence that allows the outcome to depend on selected features of a known dependence network and the error dependence that allows the outcome to be…
Descriptors: Multivariate Analysis, Regression (Statistics), Models, Correlation
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Costa, Stella F.; Diniz, Michael M. – Education and Information Technologies, 2022
The large rates of students' failure is a very frequent problem in undergraduate courses, being even more evident in exact sciences. Pointing out the reasons of such problem is a paramount research topic, though not an easy task. An alternative is to use Educational Data Mining techniques (EDM), which enables one to convert data from educational…
Descriptors: Prediction, Undergraduate Students, Mathematics Education, Models
Poitras, Eric; Butcher, Kirsten R.; Orr, Matthew; Hudson, Michelle A.; Larson, Madlyn – Interactive Learning Environments, 2022
This study mined student interactions with visual representations as a means to automate assessment of learning in a complex, inquiry-based learning environment. Log trace data of 143 middle school students' interactions with an interactive map in Research Quest (an inquiry-based, online learning environment) were analyzed. Students used the…
Descriptors: Middle School Students, Electronic Learning, Maps, Science Instruction
De Nóbrega, José Renato – Teaching Statistics: An International Journal for Teachers, 2017
A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…
Descriptors: Statistical Analysis, Sequential Approach, Pattern Recognition, Simulation
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao – IEEE Transactions on Learning Technologies, 2014
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
Descriptors: Cognitive Style, Pattern Recognition, Intelligent Tutoring Systems, Prediction
Wang, Lan-Ting; Lee, Kun-Chou – Turkish Online Journal of Educational Technology - TOJET, 2014
The vision plays an important role in educational technologies because it can produce and communicate quite important functions in teaching and learning. In this paper, learners' preference for the visual complexity on small screens of mobile computers is studied by neural networks. The visual complexity in this study is divided into five…
Descriptors: Preferences, Educational Technology, Visual Acuity, Visual Literacy
Mejia, Felipe – ProQuest LLC, 2012
Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…
Descriptors: Structural Elements (Construction), Acoustics, Pattern Recognition, Computation
Cornell, Sonia A.; Lahiri, Aditi; Eulitz, Carsten – Journal of Experimental Psychology: Human Perception and Performance, 2013
The precise structure of speech sound representations is still a matter of debate. In the present neurobiological study, we compared predictions about differential sensitivity to speech contrasts between models that assume full specification of all phonological information in the mental lexicon with those assuming sparse representations (only…
Descriptors: Neurosciences, Models, Speech Communication, Articulation (Speech)
Kirwan, C. Brock; Hartshorn, Andrew; Stark, Shauna M.; Goodrich-Hunsaker, Naomi J.; Hopkins, Ramona O.; Stark, Craig E. L. – Neuropsychologia, 2012
Computational models of hippocampal function propose that the hippocampus is capable of rapidly storing distinct representations through a process known as pattern separation. This prediction is supported by electrophysiological data from rodents and neuroimaging data from humans. Here, we test the prediction that damage to the hippocampus would…
Descriptors: Prediction, Patients, Recognition (Psychology), Computation
Chiou, Guo-Li; Anderson, O. Roger – Science Education, 2010
This study first used a new approach, combining students' ontological beliefs and process explanations, to represent students' mental models of heat conduction and then examined the relationships between their mental models and their predictions. Clinical interviews were conducted to probe 30 undergraduate physics students' mental models and their…
Descriptors: Undergraduate Students, Physics, Pattern Recognition, Heat
Shapiro, Joel; Bray, Christopher – Continuing Higher Education Review, 2011
This article describes a model that can be used to analyze student enrollment data and can give insights for improving retention of part-time students and refining institutional budgeting and planning efforts. Adult higher-education programs are often challenged in that part-time students take courses less reliably than full-time students. For…
Descriptors: Higher Education, Adult Students, Part Time Students, Enrollment Trends
Chang, Chih-Kai; Chen, Gwo-Dong; Wang, Chin-Yeh – Behaviour & Information Technology, 2011
Functional roles may explain the learning performance of groups. Detecting a functional role is critical for promoting group learning performance in computer-supported collaborative learning environments. However, it is not easy for teachers to identify the functional roles played by students in a web-based learning group, or the relationship…
Descriptors: Foreign Countries, Elementary School Teachers, Middle School Teachers, Group Dynamics
Previous Page | Next Page »
Pages: 1 | 2