NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 81 results Save | Export
Emily J. Barnes – ProQuest LLC, 2024
This quantitative study investigates the predictive power of machine learning (ML) models on degree completion among adult learners in higher education, emphasizing the enhancement of data-driven decision-making (DDDM). By analyzing three ML models - Random Forest, Gradient-Boosting machine (GBM), and CART Decision Tree - within a not-for-profit,…
Descriptors: Artificial Intelligence, Higher Education, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Kuadey, Noble Arden; Mahama, Francois; Ankora, Carlos; Bensah, Lily; Maale, Gerald Tietaa; Agbesi, Victor Kwaku; Kuadey, Anthony Mawuena; Adjei, Laurene – Interactive Technology and Smart Education, 2023
Purpose: This study aims to investigate factors that could predict the continued usage of e-learning systems, such as the learning management systems (LMS) at a Technical University in Ghana using machine learning algorithms. Design/methodology/approach: The proposed model for this study adopted a unified theory of acceptance and use of technology…
Descriptors: Foreign Countries, College Students, Learning Management Systems, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Zanellati, Andrea; Macauda, Anita; Panciroli, Chiara; Gabbrielli, Maurizio – Research on Education and Media, 2023
Within scientific debate on post-digital and education, we present a position paper to describe a research project aimed at the design of a predictive model for students' low achievements in mathematics in Italy. The model is based on the INVALSI data set, an Italian large-scale assessment test, and we use decision trees as the classification…
Descriptors: Foreign Countries, Artificial Intelligence, Models, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas Mgonja; Francisco Robles – Journal of College Student Retention: Research, Theory & Practice, 2024
Completion of remedial mathematics has been identified as one of the keys to college success. However, completion rates in remedial mathematics have been low and are of much debate across America. This study leverages machine learning techniques in trying to predict and understand completion rates in remedial mathematics. The purpose of this study…
Descriptors: Predictor Variables, Remedial Mathematics, Mathematics Achievement, Graduation Rate
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Senapati, Biswaranjan – ProQuest LLC, 2023
A neurological disorder, along with several behavioral issues, may be to blame for a child's subpar performance in the academic journey (such as anxiety, depression, learning disorders, and irritability). These symptoms can be used to diagnose children with ASD, and supervised machine learning models can help differentiate between ASD traits and…
Descriptors: Artificial Intelligence, Educational Technology, Autism Spectrum Disorders, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schmucker, Robin; Wang, Jingbo; Hu, Shijia; Mitchell, Tom M. – Journal of Educational Data Mining, 2022
We consider the problem of assessing the changing performance levels of individual students as they go through online courses. This student performance modeling problem is a critical step for building adaptive online teaching systems. Specifically, we conduct a study of how to utilize various types and large amounts of log data from earlier…
Descriptors: Academic Achievement, Electronic Learning, Artificial Intelligence, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Tanner M.; Saleh, Asmalina; Ozogul, Gamze – International Journal of Artificial Intelligence in Education, 2023
Encouraging teachers to reflect on their instructional practices and course design has been shown to be an effective means of improving instruction and student learning. However, the process of encouraging reflection is difficult; reflection requires quality data, thoughtful analysis, and contextualized interpretation. Because of this, research on…
Descriptors: Reflection, Artificial Intelligence, Natural Language Processing, Data Collection
Caesar Jude Clemente – ProQuest LLC, 2023
Having a job immediately after graduation is the dream of every IT graduate. However, not everyone can achieve this outcome. The study's primary goal is to develop predictive models to forecast IT graduates' chances of finding a job based on factors such as academic performance, socioeconomic status, academic habits, and demographic data.…
Descriptors: Artificial Intelligence, Prediction, Models, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
D. V. D. S. Abeysinghe; M. S. D. Fernando – IAFOR Journal of Education, 2024
"Education is the key to success," one of the most heard motivational statements by all of us. People engage in education at different phases of our lives in various forms. Among them, university education plays a vital role in our academic and professional lives. During university education many undergraduates will face several…
Descriptors: Models, At Risk Students, Mentors, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Méndez-Giménez, Antonio; del Pilar Mahedero-Navarrete, María; Puente-Maxera, Federico; de Ojeda, Diego Martínez – European Physical Education Review, 2022
Research on the impact of the Sport Education model (SEM) in motivational terms is prolific and consistent; however, studies that jointly address the effects of the SEM on adolescents' motivational, emotional, and well-being dimensions are scarce. This study aimed to examine the effect of a multi-season SEM-based program on self-determined…
Descriptors: Physical Education, Student Motivation, Psychological Patterns, Well Being
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kirdök, Oguzhan; Korkmaz, Ozan – Educational Research and Reviews, 2018
This study aims to examine the predictability of emotional intelligence and five factor personality traits on career decision difficulties. The study group consisted of 432 students (246 women, 186 men) who participated in five different high schools in Adana and voluntarily participated in the study. Data collection tool were composed of Career…
Descriptors: Personality Traits, Emotional Intelligence, High School Students, Career Choice
Peer reviewed Peer reviewed
Direct linkDirect link
Min, Wookhee; Frankosky, Megan H.; Mott, Bradford W.; Rowe, Jonathan P.; Smith, Andy; Wiebe, Eric; Boyer, Kristy Elizabeth; Lester, James C. – IEEE Transactions on Learning Technologies, 2020
A distinctive feature of game-based learning environments is their capacity for enabling stealth assessment. Stealth assessment analyzes a stream of fine-grained student interaction data from a game-based learning environment to dynamically draw inferences about students' competencies through evidence-centered design. In evidence-centered design,…
Descriptors: Game Based Learning, Student Evaluation, Artificial Intelligence, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6