Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
International Educational… | 3 |
British Journal of… | 2 |
Education and Information… | 1 |
Journal of Computing in… | 1 |
Journal of Education for… | 1 |
Journal of Educational… | 1 |
Journal of Learning Analytics | 1 |
Author
Baker, Ryan S. | 1 |
Berning, Andrew W. | 1 |
Cerratto-Pargman, Teresa | 1 |
Chang Lu | 1 |
Chen, Lujie Karen | 1 |
Chen, Zhiyuan | 1 |
Chu, Wei | 1 |
Chuang, Isaac | 1 |
Fu Chen | 1 |
Gong, Jiaqi | 1 |
Gowda, Sujith M. | 1 |
More ▼ |
Publication Type
Reports - Research | 10 |
Journal Articles | 7 |
Speeches/Meeting Papers | 3 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fu Chen; Chang Lu; Ying Cui – Education and Information Technologies, 2024
Successful computer-based assessments for learning greatly rely on an effective learner modeling approach to analyze learner data and evaluate learner behaviors. In addition to explicit learning performance (i.e., product data), the process data logged by computer-based assessments provide a treasure trove of information about how learners solve…
Descriptors: Computer Assisted Testing, Problem Solving, Learning Analytics, Learning Processes
Saqr, Mohammed – British Journal of Educational Technology, 2023
Learning analytics is a fast-growing discipline. Institutions and countries alike are racing to harness the power of using data to support students, teachers and stakeholders. Research in the field has proven that predicting and supporting underachieving students is worthwhile. Nonetheless, challenges remain unresolved, for example, lack of…
Descriptors: Learning Analytics, Generalizability Theory, Models, Grades (Scholastic)
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Mutimukwe, Chantal; Viberg, Olga; Oberg, Lena-Maria; Cerratto-Pargman, Teresa – British Journal of Educational Technology, 2022
Understanding students' privacy concerns is an essential first step toward effective privacy-enhancing practices in learning analytics (LA). In this study, we develop and validate a model to explore the students' privacy concerns (SPICE) regarding LA practice in higher education. The SPICE model considers "privacy concerns" as a central…
Descriptors: Privacy, Learning Analytics, Student Attitudes, College Students
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Rushkin, Ilia; Chuang, Isaac; Tingley, Dustin – Journal of Learning Analytics, 2019
Each time a learner in a self-paced online course seeks to answer an assessment question, it takes some time for the student to read the question and arrive at an answer to submit. If multiple attempts are allowed, and the first answer is incorrect, it takes some time to provide a second answer. Here we study the distribution of such…
Descriptors: Online Courses, Response Style (Tests), Models, Learner Engagement
Morsy, Sara; Karypis, George – International Educational Data Mining Society, 2019
Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection as well as for designing personalized degree plans and modifying them based on their performance. One of the successful approaches for accurately predicting a student's grades in future courses is…
Descriptors: Grades (Scholastic), Models, Prediction, Predictor Variables
Mandalapu, Varun; Chen, Lujie Karen; Chen, Zhiyuan; Gong, Jiaqi – International Educational Data Mining Society, 2021
With the increasing adoption of Learning Management Systems (LMS) in colleges and universities, research in exploring the interaction data captured by these systems is promising in developing a better learning environment and improving teaching practice. Most of these research efforts focused on course-level variables to predict student…
Descriptors: Integrated Learning Systems, Interaction, Undergraduate Students, Minority Group Students
Chu, Wei; Pavlik, Philip I., Jr. – International Educational Data Mining Society, 2023
In adaptive learning systems, various models are employed to obtain the optimal learning schedule and review for a specific learner. Models of learning are used to estimate the learner's current recall probability by incorporating features or predictors proposed by psychological theory or empirically relevant to learners' performance. Logistic…
Descriptors: Reaction Time, Accuracy, Models, Predictor Variables
Baker, Ryan S.; Berning, Andrew W.; Gowda, Sujith M.; Zhang, Shizhu; Hawn, Aaron – Journal of Education for Students Placed at Risk, 2020
Dropout remains a persistent challenge within high school education. In this paper, we present a case study on automatically detecting whether a student is at-risk of dropout within a diverse school district in Texas. We predict whether a student will drop out in a future school year from data on students' discipline, attendance, course-taking,…
Descriptors: At Risk Students, High School Students, Dropout Prevention, Student Diversity