NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Gierl, Mark J.; Lai, Hollis – International Journal of Testing, 2012
Automatic item generation represents a relatively new but rapidly evolving research area where cognitive and psychometric theories are used to produce tests that include items generated using computer technology. Automatic item generation requires two steps. First, test development specialists create item models, which are comparable to templates…
Descriptors: Foreign Countries, Psychometrics, Test Construction, Test Items
Kim, Iljoo – ProQuest LLC, 2011
The size and dynamism of the Web poses challenges for all its stakeholders, which include producers/consumers of content, and advertisers who want to place advertisements next to relevant content. A critical piece of information for the stakeholders is the demographics of the consumers who are likely to visit a given web site. However, predicting…
Descriptors: Stakeholders, Prediction, Internet, Audiences
Taft, Laritza M. – ProQuest LLC, 2010
In its report "To Err is Human", The Institute of Medicine recommended the implementation of internal and external voluntary and mandatory automatic reporting systems to increase detection of adverse events. Knowledge Discovery in Databases (KDD) allows the detection of patterns and trends that would be hidden or less detectable if analyzed by…
Descriptors: Pregnancy, Risk, Patients, Program Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Fernandez Aleman, J. L.; Palmer-Brown, D.; Jayne, C. – IEEE Transactions on Education, 2011
This paper presents the results of a project on generating diagnostic feedback for guided learning in a first-year course on programming and a Master's course on software quality. An online multiple-choice questions (MCQs) system is integrated with neural network-based data analysis. Findings about how students use the system suggest that the…
Descriptors: Foreign Countries, Learning Processes, Computer Assisted Instruction, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Louca, Loucas T.; Zacharia, Zacharias C.; Michael, Michalis; Constantinou, Constantinos P. – Journal of Educational Computing Research, 2011
The purpose of this study was to develop a framework for analyzing and evaluating student-constructed models of physical phenomena and monitoring the progress of these models. Moreover, we aimed to examine whether this framework could capture differences between models created using different computer-based modeling tools; namely, computer-based…
Descriptors: Foreign Countries, Programming, Classification, Student Evaluation
Moffitt, Kevin Christopher – ProQuest LLC, 2011
The three objectives of this dissertation were to develop a question type model for predicting linguistic features of responses to interview questions, create a tool for linguistic analysis of documents, and use lexical bundle analysis to identify linguistic differences between fraudulent and non-fraudulent financial reports. First, The Moffitt…
Descriptors: Cues, Verbs, Natural Language Processing, Discriminant Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kovacevic, Aleksandar; Ivanovic, Dragan; Milosavljevic, Branko; Konjovic, Zora; Surla, Dusan – Program: Electronic Library and Information Systems, 2011
Purpose: The aim of this paper is to develop a system for automatic extraction of metadata from scientific papers in PDF format for the information system for monitoring the scientific research activity of the University of Novi Sad (CRIS UNS). Design/methodology/approach: The system is based on machine learning and performs automatic extraction…
Descriptors: Scientific Research, Library Administration, Classification, Information Science
Peer reviewed Peer reviewed
Direct linkDirect link
Baschera, Gian-Marco; Gross, Markus – International Journal of Artificial Intelligence in Education, 2010
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
Descriptors: Foreign Countries, Spelling, Intelligent Tutoring Systems, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Previous Page | Next Page »
Pages: 1  |  2