NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 84 results Save | Export
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Fernando Rios-Avila; Michelle Lee Maroto – Sociological Methods & Research, 2024
Quantile regression (QR) provides an alternative to linear regression (LR) that allows for the estimation of relationships across the distribution of an outcome. However, as highlighted in recent research on the motherhood penalty across the wage distribution, different procedures for conditional and unconditional quantile regression (CQR, UQR)…
Descriptors: Regression (Statistics), Research Methodology, Alternative Assessment, Models
Peer reviewed Peer reviewed
Direct linkDirect link
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
von Eye, Alexander; Wiedermann, Wolfgang; Herman, Keith C.; Reinke, Wendy – Prevention Science, 2023
In standard statistical data analysis, the effects of intervention or prevention efforts are evaluated in terms of variable relations. Results from application of regression-type methods suggest whether, overall, intervention is successful. In this article, we propose using configural frequency analysis (CFA) either in tandem with regression-type…
Descriptors: Intervention, Regression (Statistics), Data Analysis, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Philip I. Pavlik; Luke G. Eglington – Grantee Submission, 2023
This paper presents a tool for creating student models in logistic regression. Creating student models has typically been done by expert selection of the appropriate terms, beginning with models as simple as IRT or AFM but more recently with highly complex models like BestLR. While alternative methods exist to select the appropriate predictors for…
Descriptors: Students, Models, Regression (Statistics), Alternative Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Philip I. Pavlik; Luke G. Eglington – International Educational Data Mining Society, 2023
This paper presents a tool for creating student models in logistic regression. Creating student models has typically been done by expert selection of the appropriate terms, beginning with models as simple as IRT or AFM but more recently with highly complex models like BestLR. While alternative methods exist to select the appropriate predictors for…
Descriptors: Students, Models, Regression (Statistics), Alternative Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Guleria, Pratiyush; Sood, Manu – Education and Information Technologies, 2023
Machine Learning concept learns from experiences, inferences and conceives complex queries. Machine learning techniques can be used to develop the educational framework which understands the inputs from students, parents and with intelligence generates the result. The framework integrates the features of Machine Learning (ML), Explainable AI (XAI)…
Descriptors: Artificial Intelligence, Career Counseling, Data Analysis, Employment Potential
Egamaria Alacam; Craig K. Enders; Han Du; Brian T. Keller – Grantee Submission, 2023
Composite scores are an exceptionally important psychometric tool for behavioral science research applications. A prototypical example occurs with self-report data, where researchers routinely use questionnaires with multiple items that tap into different features of a target construct. Item-level missing data are endemic to composite score…
Descriptors: Regression (Statistics), Scores, Psychometrics, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias – Sociological Methods & Research, 2022
Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In…
Descriptors: Models, Monte Carlo Methods, Social Science Research, Data Analysis
von Eye, Alexander; Wiedermann, Wolfgang; Herman, Keith C.; Reinke, Wendy M. – Grantee Submission, 2021
In standard statistical data analysis, the effects of intervention or prevention efforts are evaluated in terms of variable relations. Results from application of regression-type methods suggest whether, overall, intervention is successful. In this article, we propose using configural frequency analysis (CFA) either in tandem with regression-type…
Descriptors: Intervention, Regression (Statistics), Data Analysis, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Kemper, Lorenz; Vorhoff, Gerrit; Wigger, Berthold U. – European Journal of Higher Education, 2020
We perform two approaches of machine learning, logistic regressions and decision trees, to predict student dropout at the Karlsruhe Institute of Technology (KIT). The models are computed on the basis of examination data, i.e. data available at all universities without the need of specific collection. Therefore, we propose a methodical approach…
Descriptors: Foreign Countries, Predictor Variables, Potential Dropouts, School Holding Power
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bulut, Okan; Yavuz, Hatice Cigdem – International Journal of Assessment Tools in Education, 2019
Educational data mining (EDM) has been a rapidly growing research field over the last decade and enabled researchers to discover patterns and trends in education with more sophisticated methods. EDM offers promising solutions to complex educational problems. Given the rapid increase in the availability of big data in education and software…
Descriptors: Data Analysis, Educational Research, Educational Researchers, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Ella Hartenian; Nicholas J. Horton – Journal of Statistics Education, 2015
The Rail Trail and Property Values dataset includes information on a set of n = 104 homes which sold in Northampton, Massachusetts in 2007. The dataset provides house information (square footage, acreage, number of bedrooms, etc.), price estimates (from Zillow.com) at four time points, location, distance from a rail trail in the community, biking…
Descriptors: Statistics, Physical Activities, Parks, Real Estate
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Finch, W. Holmes; Finch, Maria E. Hernandez – Practical Assessment, Research & Evaluation, 2016
Researchers and data analysts are sometimes faced with the problem of very small samples, where the number of variables approaches or exceeds the overall sample size; i.e. high dimensional data. In such cases, standard statistical models such as regression or analysis of variance cannot be used, either because the resulting parameter estimates…
Descriptors: Sample Size, Statistical Analysis, Regression (Statistics), Predictor Variables
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6