Publication Date
In 2025 | 2 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 23 |
Descriptor
Bayesian Statistics | 24 |
Models | 24 |
Sample Size | 24 |
Simulation | 10 |
Statistical Analysis | 10 |
Comparative Analysis | 9 |
Item Response Theory | 9 |
Computation | 8 |
Evaluation Methods | 7 |
Statistical Bias | 6 |
Classification | 5 |
More ▼ |
Source
Author
Hong, Yuan | 2 |
de la Torre, Jimmy | 2 |
Avetisyan, Marianna | 1 |
Beavers, Daniel P. | 1 |
Bradbury, Thomas N. | 1 |
Cho, Sun-Joo | 1 |
Choi, In-Hee | 1 |
Christine DiStefano | 1 |
Conquest, Loveday L. | 1 |
Deng, Weiling | 1 |
Du, Han | 1 |
More ▼ |
Publication Type
Journal Articles | 19 |
Reports - Research | 17 |
Dissertations/Theses -… | 3 |
Reports - Descriptive | 2 |
Guides - Non-Classroom | 1 |
Opinion Papers | 1 |
Speeches/Meeting Papers | 1 |
Education Level
High Schools | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Florida (Miami) | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Tenko Raykov; Christine DiStefano; Lisa Calvocoressi – Educational and Psychological Measurement, 2024
This note demonstrates that the widely used Bayesian Information Criterion (BIC) need not be generally viewed as a routinely dependable index for model selection when the bifactor and second-order factor models are examined as rival means for data description and explanation. To this end, we use an empirically relevant setting with…
Descriptors: Bayesian Statistics, Models, Decision Making, Comparative Analysis
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Bayesian Adaptive Lasso for the Detection of Differential Item Functioning in Graded Response Models
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Choi, In-Hee; Paek, Insu; Cho, Sun-Joo – Journal of Experimental Education, 2017
The purpose of the current study is to examine the performance of four information criteria (Akaike's information criterion [AIC], corrected AIC [AICC] Bayesian information criterion [BIC], sample-size adjusted BIC [SABIC]) for detecting the correct number of latent classes in the mixture Rasch model through simulations. The simulation study…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Simulation
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Huang, Hung-Yu – Educational and Psychological Measurement, 2017
Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Computation
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E. – Sociological Methods & Research, 2017
Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…
Descriptors: Bayesian Statistics, Classification, Models, Correlation
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Liu, Junhui – ProQuest LLC, 2012
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
Descriptors: Statistical Analysis, Models, Sample Size, Statistical Bias
Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel – Psicologica: International Journal of Methodology and Experimental Psychology, 2012
In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…
Descriptors: Regression (Statistics), Models, Simulation, Least Squares Statistics
Previous Page | Next Page ยป
Pages: 1 | 2