Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 25 |
Descriptor
Models | 48 |
Molecular Structure | 48 |
Science Activities | 48 |
Science Instruction | 27 |
Chemistry | 25 |
Science Education | 21 |
Teaching Methods | 20 |
Secondary School Science | 18 |
College Science | 17 |
Scientific Concepts | 15 |
Higher Education | 11 |
More ▼ |
Source
Author
Yamana, Shukichi | 3 |
Aagaard, Stanley A. | 1 |
Alusik, John | 1 |
Andrews, Edwin S. | 1 |
Ashkenaz, David E. | 1 |
Bara, Jason E. | 1 |
Barrows, Susan E. | 1 |
Battino, Rubin | 1 |
Bennett, Alice S. | 1 |
Billington, Susan | 1 |
Birk, James P. | 1 |
More ▼ |
Publication Type
Journal Articles | 40 |
Reports - Descriptive | 24 |
Guides - Classroom - Teacher | 13 |
Reports - Research | 9 |
Guides - Non-Classroom | 3 |
Education Level
Higher Education | 11 |
Postsecondary Education | 7 |
Secondary Education | 6 |
High Schools | 5 |
Junior High Schools | 2 |
Middle Schools | 2 |
Elementary Secondary Education | 1 |
Audience
Practitioners | 19 |
Teachers | 14 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hoover, Gabrielle C.; Dicks, Andrew P.; Seferos, Dwight S. – Journal of Chemical Education, 2021
In undergraduate chemistry curricula that include computational modeling, students may gain first-hand experience in both introductory and advanced applications of this technique. However, although students can be exposed to the predictive power of computational work, its capabilities are often limited to determining the intrinsic properties of…
Descriptors: Undergraduate Students, College Science, Organic Chemistry, Computation
Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo – Biochemistry and Molecular Biology Education, 2018
Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student.…
Descriptors: Undergraduate Students, Biology, Nursing Students, Biochemistry
Elsworth, Catherine; Li, Barbara T. Y.; Ten, Abilio – Journal of Chemical Education, 2017
In this letter we present an innovative and cost-effective method of constructing crystal structures using Dual Lock fastening adhesive tape with table tennis (ping pong) balls. The use of these fasteners allows the balls to be easily assembled into layers to model various crystal structures and unit cells and then completely disassembled again.…
Descriptors: Hands on Science, Science Activities, Models, Physical Sciences
Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary – Journal of Chemical Education, 2016
Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…
Descriptors: Organic Chemistry, Molecular Structure, Models, Visual Aids
Lotter, Christine; Taylor, Laurie – Science Teacher, 2016
In the 2 day lesson presented in this article, students explain how ionic substances interact in solutions by developing and revising their own explanatory models. The lesson engaged students in three-dimensional learning through creating and revising their own models to explain the interaction of ionic substances and polar molecules in a closed…
Descriptors: Molecular Structure, Science Activities, Science Instruction, Scientific Methodology
Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison – Journal of Chemical Education, 2015
A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…
Descriptors: Chemistry, Hands on Science, Science Activities, Molecular Structure
Pentecost, Thomas; Weber, Sarah; Herrington, Deborah – Science Teacher, 2016
Research suggests that connecting the visible (macroscopic) world of chemical phenomena to the invisible (particulate) world of atoms and molecules enhances student understanding in chemistry. This approach aligns with the science standards and is fundamental to the redesigned AP Chemistry curriculum. However, chemistry is usually taught at the…
Descriptors: Chemistry, Molecular Structure, Visual Aids, Critical Thinking
Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E. – Journal of Chemical Education, 2015
The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…
Descriptors: Molecular Structure, Printing, Models, Design Crafts
Oliveira, Daniela Kênia B. S.; Justi, Rosária; Mendonça, Paula Cristina Cardoso – International Journal of Science Education, 2015
This paper discusses the use of non-verbal representations in a modelling-based science teaching context, in which argumentative and explanatory situations occur. More specifically, we analyse how the students and teacher use representations in their discourse in modelling activities, and we discuss the relationships between the functions of these…
Descriptors: Science Education, Persuasive Discourse, Science Process Skills, Science Activities
Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young – Journal of Chemical Education, 2015
Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…
Descriptors: Science Activities, Magnets, Demonstrations (Educational), Undergraduate Students
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Casas, Lluís; Estop, Euge`nia – Journal of Chemical Education, 2015
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Descriptors: Geometry, Models, Printing, Physical Sciences
Ryan, Sheila; Herrington, Deborah G. – Journal of Chemical Education, 2014
Understanding what happens at the particulate level when ionic compounds dissolve in water is difficult for many students, yet this understanding is critical in explaining many macroscopic observations. This article describes a student-centered activity designed to help strengthen students' conceptual understanding of this process at the…
Descriptors: Chemistry, Science Activities, Science Instruction, Magnets
Cohen, Joel I. – American Biology Teacher, 2014
A standard part of biology curricula is a project-based assessment of cell structure and function. However, these are often individual assignments that promote little problem-solving or group learning and avoid the subject of organelle chemical interactions. I evaluate a model-based cell project designed to foster group and individual guided…
Descriptors: Biology, Science Instruction, Cytology, Models
Larsson, Caroline; Tibell, Lena A. – Research in Science Education, 2015
A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students' everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp…
Descriptors: Science Education, Biology, Scientific Concepts, Molecular Structure