NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Renner, Melissa; Griesbeck, Axel – Journal of Chemical Education, 2020
Due to immense cost reduction and routine commercial availability, 3D printing has become the cutting-edge technology with enormous potential--also for educational and applied chemistry. It opens the opportunity to print custom-made reactors, such as (micro) flow reactors. In addition, 3D-printing technology can simplify chemical reactions, such…
Descriptors: Printing, Computer Peripherals, Models, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Ionel Popa; Florin Saitis – Journal of Chemical Education, 2022
Proteins are "magical" workers inside our body, as they accomplish most of the cellular functions. Here we report on a novel approach to teach protein folding and unfolding, using magnets and flexible 3D-printed protein structures. To illustrate this physical process, we used colored circular magnets designed for whiteboards, connected…
Descriptors: Magnets, Printing, Computer Peripherals, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Oliveira, Karol N.; Naujorks, Amanda C.; Freitas, Welica P. S.; Goncalves, Alem-Mar B.; Calheiro, Lisiane B. – Journal of Chemical Education, 2021
The use of radioactive isotopes in radioactive decay studies can be a problem due to the manipulation of radioisotopes, expensive equipment, and the difficulty of finding samples with a reasonable half-life (between 1 and 10 min). In this paper, we present a mock-up of a Geiger-Mu¨ller counter plus three fictitious radioisotopes. They form an…
Descriptors: Printing, Computer Peripherals, Models, Simulation