Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 11 |
Descriptor
Computer Peripherals | 11 |
Models | 11 |
Science Instruction | 11 |
Molecular Structure | 6 |
Teaching Methods | 6 |
Chemistry | 5 |
Printing | 5 |
Scientific Concepts | 5 |
Technology Uses in Education | 5 |
Hands on Science | 4 |
Computer Software | 3 |
More ▼ |
Source
Journal of Chemical Education | 7 |
Biochemistry and Molecular… | 2 |
Chemistry Education Research… | 1 |
International Educational… | 1 |
Author
Asquith, Christopher R. M. | 1 |
Balaji, B. S. | 1 |
Blauch, David N. | 1 |
Cao, Zi Jing | 1 |
Carroll, Felix A. | 1 |
E. Eisner | 1 |
Griesbeck, Axel | 1 |
H. Martin | 1 |
Heinzmann, Hartmut | 1 |
Hilton, Stephen T. | 1 |
J. K. Klosterman | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Descriptive | 7 |
Reports - Research | 3 |
Collected Works - Proceedings | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 3 |
Secondary Education | 2 |
Elementary Education | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Renner, Melissa; Griesbeck, Axel – Journal of Chemical Education, 2020
Due to immense cost reduction and routine commercial availability, 3D printing has become the cutting-edge technology with enormous potential--also for educational and applied chemistry. It opens the opportunity to print custom-made reactors, such as (micro) flow reactors. In addition, 3D-printing technology can simplify chemical reactions, such…
Descriptors: Printing, Computer Peripherals, Models, Chemistry
Accessible 3D Printing: Multicolor Molecular Models From Consumer-Grade, Single Filament 3D Printers
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Singhal, Ishu; Balaji, B. S. – Journal of Chemical Education, 2022
Learning to write chemical formulas of compounds is a basic and indispensable part of understanding and studying chemistry. However, it is hard for students with visual impairment to assess and learn molecular arrangements and formulas. For the convenience of such students with special needs, it is necessary to come up with easy, comprehensive,…
Descriptors: Open Source Technology, Chemistry, Computer Peripherals, Visual Impairments
Niece, Brian K. – Journal of Chemical Education, 2019
Models were prepared by 3D printing that can be used to demonstrate the operations required for the study of molecular symmetry. The models were designed to emphasize the order and locations of rotation axes and to clearly illustrate the more abstract reflection and improper rotation axes. The models were well-received by students in a course on…
Descriptors: Molecular Structure, Computer Peripherals, Science Instruction, Teaching Methods
Kerwin, Sean M. – Biochemistry and Molecular Biology Education, 2019
A flexible and modular peptide modeling set was designed using freely available software tools. The set consists of space-filling models of all 20 naturally occurring amino acid side chains and a modular kit for constructing peptides employing C-alpha carbons and amide bond groups. Connectors that allow free rotation about phi and psi angles on…
Descriptors: Computer Software, Teaching Methods, Science Instruction, Computer Peripherals
Savchenkov, Anton V. – Journal of Chemical Education, 2020
Sets of models of molecules (which are of interest for teaching molecular structure, symmetry, and related topics in many chemical disciplines) were prepared and made available either for self-directed 3D-printing or through the 3D-printing company Shapeways providing 3D-printing as a service. This allows teachers to save time on searching for…
Descriptors: Computer Peripherals, Printing, Hands on Science, Manipulative Materials
Reißer, Sabine; Prock, Sebastian; Heinzmann, Hartmut; Ulrich, Anne S. – Biochemistry and Molecular Biology Education, 2018
Protein ORIGAMI (http://ibg.kit.edu/protein_origami) is a browser-based web application that allows the user to create straightforward 3D paper models of folded peptides for research, teaching and presentations. An amino acid sequence can be turned into a-helices, ß-strands and random coils that can be printed out and folded into properly scaled…
Descriptors: Educational Technology, Technology Uses in Education, Models, Science Instruction
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T. – Journal of Chemical Education, 2017
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Educational Technology
Blauch, David N.; Carroll, Felix A. – Journal of Chemical Education, 2014
A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Energy
Warfa, Abdi-Rizak M.; Roehrig, Gillian H.; Schneider, Jamie L.; Nyachwaya, James – Chemistry Education Research and Practice, 2014
A significant body of the literature in science education examines students' conceptions of the dissolution of ionic solids in water, often showing that students lack proper understanding of the particulate nature of dissolving materials as well as holding numerous misconceptions about the dissolution process. Consequently, chemical educators have…
Descriptors: Chemistry, Science Instruction, Classroom Communication, Computer Peripherals
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection