NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku – Physics Teacher, 2016
The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…
Descriptors: Optics, Geometric Concepts, Secondary School Science, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Scott, Alan – Physics Teacher, 2014
On Aug. 13, 2011, at 8:45 p.m. country music fans were eagerly awaiting the band Sugarland to make its entry onto the main stage at the Indiana State Fairgrounds. Also competing for the fans' attention was an approaching storm. Sugarland never made their entrance. At 8:49 p.m. the stage rigging was hit by 59 mile/h (94 km/h) winds causing it to…
Descriptors: Introductory Courses, Fundamental Concepts, Physics, Investigations
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Todd; Neilson, Drew; Oh, Phil Seok – Science Teacher, 2013
Of the eight practices of science identified in "A Framework for K-12 Science Education" (NRC 2012), helping students develop and use models has been identified by many as an anchor (Schwarz and Passmore 2012; Windschitl 2012). In instruction, disciplinary core ideas, crosscutting concepts, and scientific practices can be meaningfully…
Descriptors: Physics, Models, Science Education, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G. – Journal of Science Education and Technology, 2010
The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an…
Descriptors: Misconceptions, Models, Evolution, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Van Der Valk, Ton; Van Driel, Jan H.; De Vos, Wobbe – Research in Science Education, 2007
Teaching the use of models in scientific research requires a description, in general terms, of how scientists actually use models in their research activities. This paper aims to arrive at defining common characteristics of models that are used in present-day scientific research. Initially, a list of common features of models and modelling, based…
Descriptors: Measures (Individuals), Research Papers (Students), Scientific Research, Scientists
Carbonell, Jaime G.; And Others – 1983
Expert reasoning in the natural sciences appears to make extensive use of a relatively small number of general principles and reasoning strategies, each associated with a larger number of more specific inference patterns. Using a dual declarative hierarchy to represent strategic and factual knowledge, a framework for a robust scientific reasoning…
Descriptors: Artificial Intelligence, College Science, Computer Assisted Instruction, Computer Simulation