Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 24 |
Since 2006 (last 20 years) | 56 |
Descriptor
Models | 72 |
Simulation | 72 |
Classification | 70 |
Bayesian Statistics | 16 |
Computation | 15 |
Item Response Theory | 15 |
Comparative Analysis | 13 |
Evaluation Methods | 13 |
Statistical Analysis | 13 |
Accuracy | 10 |
Correlation | 9 |
More ▼ |
Source
Author
Barnes, Tiffany, Ed. | 2 |
Beretvas, S. Natasha | 2 |
Henson, Robert | 2 |
Jihong Zhang | 2 |
Kaczetow, Walter | 2 |
Madison, Matthew J. | 2 |
Robitzsch, Alexander | 2 |
Rupp, Andre A. | 2 |
Ruscio, John | 2 |
Seungwon Chung | 2 |
Van Mechelen, Iven | 2 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 4 |
Practitioners | 2 |
Administrators | 1 |
Teachers | 1 |
Location
Australia | 2 |
Afghanistan | 1 |
Canada | 1 |
Czech Republic | 1 |
Finland | 1 |
Florida | 1 |
Florida (Miami) | 1 |
France | 1 |
Illinois (Chicago) | 1 |
Indiana | 1 |
Israel | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Dynamic Indicators of Basic… | 1 |
Massachusetts Comprehensive… | 1 |
Minnesota Multiphasic… | 1 |
Peabody Picture Vocabulary… | 1 |
Program for International… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Joemari Olea; Kevin Carl Santos – Journal of Educational and Behavioral Statistics, 2024
Although the generalized deterministic inputs, noisy "and" gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that…
Descriptors: Cognitive Measurement, Models, Algorithms, Simulation
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Jihong Zhang – ProQuest LLC, 2022
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Cassiday, Kristina R.; Cho, Youngmi; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth…
Descriptors: Probability, Models, Simulation, Mathematics
Jehanzeb Rashid Cheema – Journal of Education in Muslim Societies, 2024
This study explores the relationship between the Spiral Dynamics and the 3H (head, heart, hands) models of human growth and development, using constructs such as empathy, moral reasoning, forgiveness, and community mindedness that have been shown to have implications for education. The specific research question is, "Can a combination of…
Descriptors: Correlation, Factor Analysis, Computer Software, Moral Values
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Huang, Hung-Yu – Educational and Psychological Measurement, 2023
The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs)…
Descriptors: Test Items, Classification, Bayesian Statistics, Decision Making
Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J. – Cognitive Science, 2018
Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…
Descriptors: Simulation, Models, Cognitive Processes, Classification
Kalkan, Ömür K.; Kelecioglu, Hülya; Basokçu, Tahsin O. – International Education Studies, 2018
The application of CDMs to fraction subtraction data revealed problems on the classification of examinees, latent class sizes, and the use of higher-order models. Additionally, selecting the most appropriate model assumes critical importance if there are several appropriate models available for the data. In the present study, DINA-RDINA and…
Descriptors: Comparative Analysis, Models, Item Response Theory, Multivariate Analysis
Best, Ryan M.; Goldstone, Robert L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Categorical perception (CP) effects manifest as faster or more accurate discrimination between objects that come from different categories compared with objects that come from the same category, controlling for the physical differences between the objects. The most popular explanations of CP effects have relied on perceptual warping causing…
Descriptors: Bias, Comparative Analysis, Models, College Students
Madison, Matthew J. – Educational Measurement: Issues and Practice, 2019
Recent advances have enabled diagnostic classification models (DCMs) to accommodate longitudinal data. These longitudinal DCMs were developed to study how examinees change, or transition, between different attribute mastery statuses over time. This study examines using longitudinal DCMs as an approach to assessing growth and serves three purposes:…
Descriptors: Longitudinal Studies, Item Response Theory, Psychometrics, Criterion Referenced Tests
Harel, Daphna; Steele, Russell J. – Journal of Educational and Behavioral Statistics, 2018
Collapsing categories is a commonly used data reduction technique; however, to date there do not exist principled methods to determine whether collapsing categories is appropriate in practice. With ordinal responses under the partial credit model, when collapsing categories, the true model for the collapsed data is no longer a partial credit…
Descriptors: Matrices, Models, Item Response Theory, Research Methodology