Publication Date
In 2025 | 0 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 14 |
Since 2016 (last 10 years) | 38 |
Since 2006 (last 20 years) | 90 |
Descriptor
Data Analysis | 117 |
Models | 117 |
Simulation | 117 |
Item Response Theory | 31 |
Computation | 29 |
Evaluation Methods | 22 |
Comparative Analysis | 20 |
Statistical Analysis | 19 |
Bayesian Statistics | 17 |
Foreign Countries | 16 |
Error of Measurement | 14 |
More ▼ |
Source
Author
Gongjun Xu | 3 |
de la Torre, Jimmy | 3 |
Amanda Goodwin | 2 |
Barnes, Tiffany, Ed. | 2 |
Biehler, Rolf | 2 |
Ceulemans, Eva | 2 |
Chiung-Yu Huang | 2 |
Frischemeier, Daniel | 2 |
Jun Yan | 2 |
Matthew Naveiras | 2 |
Paul De Boeck | 2 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 2 |
Practitioners | 1 |
Teachers | 1 |
Location
Australia | 3 |
China | 3 |
Afghanistan | 2 |
France | 2 |
Germany | 2 |
Massachusetts | 2 |
Mexico | 2 |
Washington | 2 |
Africa | 1 |
Brazil | 1 |
California | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
Assessments and Surveys
Program for International… | 2 |
Trends in International… | 2 |
Big Five Inventory | 1 |
Massachusetts Comprehensive… | 1 |
National Assessment of… | 1 |
Rosenberg Self Esteem Scale | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Wenchao Ma; Miguel A. Sorrel; Xiaoming Zhai; Yuan Ge – Journal of Educational Measurement, 2024
Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual-purpose model for simultaneously estimating students' overall ability and the presence and absence of…
Descriptors: Models, Misconceptions, Diagnostic Tests, Ability
Jeffrey Matayoshi; Shamya Karumbaiah – Journal of Educational Data Mining, 2024
Various areas of educational research are interested in the transitions between different states--or events--in sequential data, with the goal of understanding the significance of these transitions; one notable example is affect dynamics, which aims to identify important transitions between affective states. Unfortunately, several works have…
Descriptors: Models, Statistical Bias, Data Analysis, Simulation
Ryan Derickson – ProQuest LLC, 2022
Item Response Theory (IRT) models are a popular analytic method for self report data. We show how traditional IRT models can be vulnerable to specific kinds of asymmetric measurement error (AME) in self-report data, because the models spread the error to all estimates -- even those of items that do not contribute error. We quantify the impact of…
Descriptors: Item Response Theory, Measurement Techniques, Error of Measurement, Models
Xiong Luo – International Journal of Web-Based Learning and Teaching Technologies, 2024
However, although existing models for evaluating the effectiveness of universities provide a large number of modeling solutions, it is difficult to objectively evaluate dynamic coefficients based on the differences in precision ideological and political work systems of different types of universities in the evaluation process of innovative paths…
Descriptors: Educational Research, Ideology, Political Issues, Models
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Liu, Jin – Journal of Educational and Behavioral Statistics, 2022
Longitudinal data analysis has been widely employed to examine between-individual differences in within-individual changes. One challenge of such analyses is that the rate-of-change is only available indirectly when change patterns are nonlinear with respect to time. Latent change score models (LCSMs), which can be employed to investigate the…
Descriptors: Longitudinal Studies, Individual Differences, Scores, Models
Hecht, Martin; Voelkle, Manuel C. – International Journal of Behavioral Development, 2021
The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study…
Descriptors: Models, Longitudinal Studies, Prevention, Time
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Wind, Stefanie A.; Sebok-Syer, Stefanie S. – Journal of Educational Measurement, 2019
When practitioners use modern measurement models to evaluate rating quality, they commonly examine rater fit statistics that summarize how well each rater's ratings fit the expectations of the measurement model. Essentially, this approach involves examining the unexpected ratings that each misfitting rater assigned (i.e., carrying out analyses of…
Descriptors: Measurement, Models, Evaluators, Simulation
Hou, Likun; Terzi, Ragip; de la Torre, Jimmy – International Journal of Assessment Tools in Education, 2020
This study aims to conduct differential item functioning analyses in the context of cognitive diagnosis assessments using various formulations of the Wald test. In implementing the Wald test, two scenarios are considered: one where the underlying reduced model can be assumed; and another where a saturated CDM is used. Illustration of the different…
Descriptors: Cognitive Measurement, Diagnostic Tests, Item Response Theory, Models
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Ziying Li; A. Corinne Huggins-Manley; Walter L. Leite; M. David Miller; Eric A. Wright – Educational and Psychological Measurement, 2022
The unstructured multiple-attempt (MA) item response data in virtual learning environments (VLEs) are often from student-selected assessment data sets, which include missing data, single-attempt responses, multiple-attempt responses, and unknown growth ability across attempts, leading to a complex and complicated scenario for using this kind of…
Descriptors: Sequential Approach, Item Response Theory, Data, Simulation