NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
An, Weihua – Sociological Methods & Research, 2023
In this article, I present a new multivariate regression model for analyzing outcomes with network dependence. The model is capable to account for two types of outcome dependence including the mean dependence that allows the outcome to depend on selected features of a known dependence network and the error dependence that allows the outcome to be…
Descriptors: Multivariate Analysis, Regression (Statistics), Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A. – Educational and Psychological Measurement, 2019
Advancements in item response theory (IRT) have led to models for dual dependence, which control for cluster and method effects during a psychometric analysis. Currently, however, this class of models does not include one that controls for when the method effects stem from two method sources in which one source functions differently across the…
Descriptors: Bayesian Statistics, Item Response Theory, Psychometrics, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kalkan, Ömür K.; Kelecioglu, Hülya; Basokçu, Tahsin O. – International Education Studies, 2018
The application of CDMs to fraction subtraction data revealed problems on the classification of examinees, latent class sizes, and the use of higher-order models. Additionally, selecting the most appropriate model assumes critical importance if there are several appropriate models available for the data. In the present study, DINA-RDINA and…
Descriptors: Comparative Analysis, Models, Item Response Theory, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Magnus, Brooke E.; Thissen, David – Journal of Educational and Behavioral Statistics, 2017
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
Descriptors: Item Response Theory, Models, Multivariate Analysis, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
DeMars, Christine E. – Educational and Psychological Measurement, 2016
Partially compensatory models may capture the cognitive skills needed to answer test items more realistically than compensatory models, but estimating the model parameters may be a challenge. Data were simulated to follow two different partially compensatory models, a model with an interaction term and a product model. The model parameters were…
Descriptors: Item Response Theory, Models, Thinking Skills, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Min; Hancock, Gregory R. – Educational and Psychological Measurement, 2014
Growth mixture modeling has gained much attention in applied and methodological social science research recently, but the selection of the number of latent classes for such models remains a challenging issue, especially when the assumption of proper model specification is violated. The current simulation study compared the performance of a linear…
Descriptors: Models, Classification, Simulation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xin; Beretvas, S. Natasha – Structural Equation Modeling: A Multidisciplinary Journal, 2013
This simulation study investigated use of the multilevel structural equation model (MLSEM) for handling measurement error in both mediator and outcome variables ("M" and "Y") in an upper level multilevel mediation model. Mediation and outcome variable indicators were generated with measurement error. Parameter and standard…
Descriptors: Sample Size, Structural Equation Models, Simulation, Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Jee-Seon; Steiner, Peter M.; Hall, Courtney; Thoemmes, Felix – Society for Research on Educational Effectiveness, 2013
When randomized experiments cannot be conducted in practice, propensity score (PS) techniques for matching treated and control units are frequently used for estimating causal treatment effects from observational data. Despite the popularity of PS techniques, they are not yet well studied for matching multilevel data where selection into treatment…
Descriptors: Probability, Research Methodology, Control Groups, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Marlin, Benjamin – ProQuest LLC, 2013
Education planning provides the policy maker and the decision maker a logical framework in which to develop and implement education policy. At the international level, education planning is often confounded by both internal and external complexities, making the development of education policy difficult. This research presents a discrete event…
Descriptors: Foreign Countries, Educational Planning, Educational Policy, Simulation
Previous Page | Next Page »
Pages: 1  |  2