NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg Tobias; Ortner, Tuulia M. – Educational and Psychological Measurement, 2020
The hierarchical model of van der Linden is the most popular model for responses and response times in tests. It is composed of two separate submodels--one for the responses and one for the response times--that are joined at a higher level. The submodel for the response times is based on the lognormal distribution. The lognormal distribution is a…
Descriptors: Reaction Time, Tests, Statistical Distributions, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Carter, Nancy; Felton, Nathan; Schwertman, Neil – Journal of Statistics Education, 2014
Engaging students in active learning can enhance their understanding and appreciation of a subject such as statistics. Classroom activities and projects help to engage students and further promote the learning process. In this paper, an activity investigating the influence of population size and wealth on the medal counts from the 2012 London…
Descriptors: Class Activities, Demography, Athletics, Awards
Peer reviewed Peer reviewed
Kinnucan, Mark T.; Wolfram, Dietmar – Information Processing and Management, 1990
Describes a technique for statistically comparing bibliometric models and illustrates its use with two examples using Lotka's hypothesis of author productivity and one example using library circulation frequencies. Topics discussed include nested statistical models, analysis of variance, regression, log-linear models, and the likelihood ratio…
Descriptors: Analysis of Variance, Bibliometrics, Chi Square, Comparative Analysis