NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Whittaker, Tiffany A.; Khojasteh, Jam – Journal of Experimental Education, 2017
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…
Descriptors: Statistical Analysis, Monte Carlo Methods, Models, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kenny, David A.; Kaniskan, Burcu; McCoach, D. Betsy – Sociological Methods & Research, 2015
Given that the root mean square error of approximation (RMSEA) is currently one of the most popular measures of goodness-of-model fit within structural equation modeling (SEM), it is important to know how well the RMSEA performs in models with small degrees of freedom ("df"). Unfortunately, most previous work on the RMSEA and its…
Descriptors: Error of Measurement, Models, Goodness of Fit, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming – Educational and Psychological Measurement, 2015
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Descriptors: Structural Equation Models, Statistical Analysis, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack – Educational and Psychological Measurement, 2014
The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…
Descriptors: Structural Equation Models, Brain Hemisphere Functions, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
McGrath, Robert E.; Walters, Glenn D. – Psychological Methods, 2012
Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Xitao; Sivo, Stephen A. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In research concerning model invariance across populations, researchers have discussed the limitations of the conventional chi-square difference test ([Delta] chi-square test). There have been some research efforts in using goodness-of-fit indexes (i.e., [Delta]goodness-of-fit indexes) for assessing multisample model invariance, and some specific…
Descriptors: Monte Carlo Methods, Goodness of Fit, Statistical Analysis, Simulation
Peer reviewed Peer reviewed
Curran, Patrick J.; Bollen, Kenneth A.; Paxton, Pamela; Kirby, James; Chen, Feinian – Multivariate Behavioral Research, 2002
Examined several hypotheses about the suitability of the noncentral chi square in applied research using Monte Carlo simulation experiments with seven sample sizes and three distinct model types, each with five specifications. Results show that, in general, for models with small to moderate misspecification, the noncentral chi-square is well…
Descriptors: Chi Square, Models, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods