Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 22 |
Descriptor
Models | 24 |
Structural Equation Models | 24 |
Simulation | 20 |
Computation | 10 |
Statistical Analysis | 9 |
Evaluation Methods | 7 |
Monte Carlo Methods | 7 |
Sample Size | 7 |
Error of Measurement | 5 |
Comparative Analysis | 4 |
Computer Simulation | 4 |
More ▼ |
Source
Author
Lee, Sik-Yum | 2 |
Arici, Faruk | 1 |
Aukes, Annika V. | 1 |
Balog, Alexandru | 1 |
Beretvas, S. Natasha | 1 |
Bollen, Kenneth A. | 1 |
Bollen, L. | 1 |
Caliklar, Seyma | 1 |
Carl Falk | 1 |
Chan, Wai | 1 |
Chen, Fei | 1 |
More ▼ |
Publication Type
Journal Articles | 22 |
Reports - Research | 15 |
Reports - Descriptive | 4 |
Opinion Papers | 2 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Education Level
Elementary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Ruoxuan Li; Lijuan Wang – Grantee Submission, 2024
Causal-formative indicators are often used in social science research. To achieve identification in causal-formative indicator modeling, constraints need to be applied. A conventional method is to constrain the weight of a formative indicator to be 1. The selection of which indicator to have the fixed weight, however, may influence statistical…
Descriptors: Social Science Research, Causal Models, Formative Evaluation, Measurement
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Salar, Riza; Arici, Faruk; Caliklar, Seyma; Yilmaz, Rabia M. – Journal of Science Education and Technology, 2020
The aim of this study is to investigate the augmented reality (AR) immersion experiences of university students studying in science education. The relationship between interest, usability, emotional investment, focus of attention, presence and flow was examined for university students studying in the science education department who used AR…
Descriptors: College Students, Science Education, Usability, Correlation
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Pribeanu, Costin; Balog, Alexandru; Iordache, Dragos Daniel – Interactive Learning Environments, 2017
Augmented reality (AR) technologies could enhance learning in several ways. The quality of an AR-based educational platform is a combination of key features that manifests in usability, usefulness, and enjoyment for the learner. In this paper, we present a multidimensional model to measure the quality of an AR-based application as perceived by…
Descriptors: Computer Simulation, Educational Technology, Measurement, Educational Quality
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming – Educational and Psychological Measurement, 2015
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Descriptors: Structural Equation Models, Statistical Analysis, Monte Carlo Methods, Computation
van Joolingen, W. R.; Aukes, Annika V.; Gijlers, H.; Bollen, L. – Journal of Science Education and Technology, 2015
Modeling is an important approach in the teaching and learning of science. In this study, we attempt to bring modeling within the reach of young children by creating the SimSketch modeling system, which is based on freehand drawings that can be turned into simulations. This system was used by 247 children (ages ranging from 7 to 15) to create a…
Descriptors: Models, Teaching Methods, Science Instruction, Freehand Drawing
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Li, Xin; Beretvas, S. Natasha – Structural Equation Modeling: A Multidisciplinary Journal, 2013
This simulation study investigated use of the multilevel structural equation model (MLSEM) for handling measurement error in both mediator and outcome variables ("M" and "Y") in an upper level multilevel mediation model. Mediation and outcome variable indicators were generated with measurement error. Parameter and standard…
Descriptors: Sample Size, Structural Equation Models, Simulation, Multivariate Analysis
Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack – Educational and Psychological Measurement, 2014
The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…
Descriptors: Structural Equation Models, Brain Hemisphere Functions, Simulation, Models
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Previous Page | Next Page »
Pages: 1 | 2