Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 10 |
Descriptor
Markov Processes | 11 |
Models | 11 |
Student Behavior | 11 |
College Students | 5 |
Data Analysis | 5 |
Online Courses | 5 |
Interaction | 4 |
Prediction | 4 |
Artificial Intelligence | 3 |
Automation | 3 |
Cheating | 3 |
More ▼ |
Source
International Educational… | 4 |
Journal of Educational Data… | 3 |
Cognitive Science | 1 |
IEEE Transactions on Learning… | 1 |
Journal of Educational and… | 1 |
Journal of Learning Analytics | 1 |
Author
Feng, Mingyu, Ed. | 2 |
Andrade, Alejandro | 1 |
Barnes, Tiffany, Ed. | 1 |
Brunskill, Emma | 1 |
Chi, Min, Ed. | 1 |
Danish, Joshua A. | 1 |
Daume, Hal | 1 |
Delandshere, Ginette | 1 |
Desmarais, Michel, Ed. | 1 |
Fox, Jean-Paul | 1 |
Gal, Kobi | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Collected Works - Proceedings | 3 |
Reports - Descriptive | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 4 |
Secondary Education | 3 |
Elementary Education | 2 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Early Childhood Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Location
Afghanistan | 1 |
Brazil | 1 |
Illinois (Chicago) | 1 |
Maryland (College Park) | 1 |
Netherlands | 1 |
New York (New York) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Ramesh, Arti; Goldwasser, Dan; Huang, Bert; Daume, Hal; Getoor, Lise – IEEE Transactions on Learning Technologies, 2020
Maintaining and cultivating student engagement is critical for learning. Understanding factors affecting student engagement can help in designing better courses and improving student retention. The large number of participants in massive open online courses (MOOCs) and data collected from their interactions on the MOOC open up avenues for studying…
Descriptors: Online Courses, Learner Engagement, Student Behavior, Success
Hoernle, Nicholas; Gal, Kobi; Grosz, Barbara; Protopapas, Pavlos; Rubin, Andee – International Educational Data Mining Society, 2018
Simulations that combine real world components with interactive digital media provide a rich setting for students with the potential to assist knowledge building and understanding of complex physical processes. This paper addresses the problem of modeling the effects of multiple students' simultaneous interactions on the complex and exploratory…
Descriptors: Computer Simulation, Student Behavior, Interaction, Markov Processes
Rafferty, Anna N.; Brunskill, Emma; Griffiths, Thomas L.; Shafto, Patrick – Cognitive Science, 2016
Human and automated tutors attempt to choose pedagogical activities that will maximize student learning, informed by their estimates of the student's current knowledge. There has been substantial research on tracking and modeling student learning, but significantly less attention on how to plan teaching actions and how the assumed student model…
Descriptors: Markov Processes, Educational Planning, Decision Making, Models
Geigle, Chase; Zhai, ChengXiang – Journal of Educational Data Mining, 2017
Massive open online courses (MOOCs) provide educators with an abundance of data describing how students interact with the platform, but this data is highly underutilized today. This is in part due to the lack of sophisticated tools to provide interpretable and actionable summaries of huge amounts of MOOC activity present in log data. To address…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Andrade, Alejandro; Delandshere, Ginette; Danish, Joshua A. – Journal of Learning Analytics, 2016
One of the challenges many learning scientists face is the laborious task of coding large amounts of video data and consistently identifying social actions, which is time consuming and difficult to accomplish in a systematic and consistent manner. It is easier to catalog observable behaviours (e.g., body motions or gaze) without explicitly…
Descriptors: Student Behavior, Data Analysis, Models, Video Technology
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2005
The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by an item response theory (IRT) model. The RR…
Descriptors: Item Response Theory, Models, Probability, Markov Processes
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis