NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baris Pekmezci, Fulya; Gulleroglu, H. Deniz – Eurasian Journal of Educational Research, 2019
Purpose: This study aims to investigate the orthogonality assumption, which restricts the use of Bifactor item response theory under different conditions. Method: Data of the study have been obtained in accordance with the Bifactor model. It has been produced in accordance with two different models (Model 1 and Model 2) in a simulated way.…
Descriptors: Item Response Theory, Accuracy, Item Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Bulut, Okan; Suh, Youngsuk – Educational and Psychological Measurement, 2017
A number of studies have found multiple indicators multiple causes (MIMIC) models to be an effective tool in detecting uniform differential item functioning (DIF) for individual items and item bundles. A recently developed MIMIC-interaction model is capable of detecting both uniform and nonuniform DIF in the unidimensional item response theory…
Descriptors: Test Bias, Test Items, Models, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Atalay Kabasakal, Kübra; Arsan, Nihan; Gök, Bilge; Kelecioglu, Hülya – Educational Sciences: Theory and Practice, 2014
This simulation study compared the performances (Type I error and power) of Mantel-Haenszel (MH), SIBTEST, and item response theory-likelihood ratio (IRT-LR) methods under certain conditions. Manipulated factors were sample size, ability differences between groups, test length, the percentage of differential item functioning (DIF), and underlying…
Descriptors: Comparative Analysis, Item Response Theory, Statistical Analysis, Test Bias
Liu, Qian – ProQuest LLC, 2011
For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…
Descriptors: Test Bias, Test Items, Statistical Analysis, Models
Kim, Jihye – ProQuest LLC, 2010
In DIF studies, a Type I error refers to the mistake of identifying non-DIF items as DIF items, and a Type I error rate refers to the proportion of Type I errors in a simulation study. The possibility of making a Type I error in DIF studies is always present and high possibility of making such an error can weaken the validity of the assessment.…
Descriptors: Test Bias, Test Length, Simulation, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Furlow, Carolyn F.; Ross, Terris Raiford; Gagne, Phill – Applied Psychological Measurement, 2009
Douglas, Roussos, and Stout introduced the concept of differential bundle functioning (DBF) for identifying the underlying causes of differential item functioning (DIF). In this study, reference group was simulated to have higher mean ability than the focal group on a nuisance dimension, resulting in DIF for each of the multidimensional items…
Descriptors: Test Bias, Test Items, Reference Groups, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes – Applied Psychological Measurement, 2010
The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…
Descriptors: Item Response Theory, Computation, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes – Applied Psychological Measurement, 2005
This study compares the ability of the multiple indicators, multiple causes (MIMIC) confirmatory factor analysis model to correctly identify cases of differential item functioning (DIF) with more established methods. Although the MIMIC model might have application in identifying DIF for multiple grouping variables, there has been little…
Descriptors: Identification, Factor Analysis, Test Bias, Models