Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 23 |
Descriptor
Markov Processes | 25 |
Models | 25 |
Test Items | 25 |
Monte Carlo Methods | 21 |
Item Response Theory | 16 |
Bayesian Statistics | 12 |
Reaction Time | 9 |
Computation | 8 |
Accuracy | 7 |
Goodness of Fit | 6 |
Computer Software | 5 |
More ▼ |
Source
Author
Jiao, Hong | 3 |
Chang, Hua-Hua | 2 |
Luo, Yong | 2 |
Man, Kaiwen | 2 |
Yao, Lihua | 2 |
van der Linden, Wim J. | 2 |
Babcock, Ben | 1 |
Bilir, Mustafa Kuzey | 1 |
Chernyshenko, Oleksandr S. | 1 |
Culpepper, Steven | 1 |
DeCarlo, Lawrence T. | 1 |
More ▼ |
Publication Type
Journal Articles | 23 |
Reports - Research | 17 |
Reports - Evaluative | 4 |
Reports - Descriptive | 2 |
Collected Works - Proceedings | 1 |
Dissertations/Theses -… | 1 |
Education Level
Secondary Education | 4 |
Higher Education | 2 |
Postsecondary Education | 2 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Saudi Arabia | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 2 |
Armed Services Vocational… | 1 |
Graduate Record Examinations | 1 |
National Assessment of… | 1 |
Test of English as a Foreign… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Lozano, José H.; Revuelta, Javier – Educational and Psychological Measurement, 2023
The present paper introduces a general multidimensional model to measure individual differences in learning within a single administration of a test. Learning is assumed to result from practicing the operations involved in solving the items. The model accounts for the possibility that the ability to learn may manifest differently for correct and…
Descriptors: Bayesian Statistics, Learning Processes, Test Items, Item Analysis
Luo, Yong; Liang, Xinya – Measurement: Interdisciplinary Research and Perspectives, 2019
Current methods that simultaneously model differential testlet functioning (DTLF) and differential item functioning (DIF) constrain the variances of latent ability and testlet effects to be equal between the focal and the reference groups. Such a constraint can be stringent and unrealistic with real data. In this study, we propose a multigroup…
Descriptors: Test Items, Item Response Theory, Test Bias, Models
Qiao, Xin; Jiao, Hong – Journal of Educational Measurement, 2021
This study proposes explanatory cognitive diagnostic model (CDM) jointly incorporating responses and response times (RTs) with the inclusion of item covariates related to both item responses and RTs. The joint modeling of item responses and RTs intends to provide more information for cognitive diagnosis while item covariates can be used to predict…
Descriptors: Cognitive Measurement, Models, Reaction Time, Test Items
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Trendtel, Matthias; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
A multidimensional Bayesian item response model is proposed for modeling item position effects. The first dimension corresponds to the ability that is to be measured; the second dimension represents a factor that allows for individual differences in item position effects called persistence. This model allows for nonlinear item position effects on…
Descriptors: Bayesian Statistics, Item Response Theory, Test Items, Test Format
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2019
With the development of technology-enhanced learning platforms, eye-tracking biometric indicators can be recorded simultaneously with students item responses. In the current study, visual fixation, an essential eye-tracking indicator, is modeled to reflect the degree of test engagement when a test taker solves a set of test questions. Three…
Descriptors: Test Items, Eye Movements, Models, Regression (Statistics)
Luo, Yong; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2019
Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent…
Descriptors: Item Response Theory, Monte Carlo Methods, Markov Processes, Outcome Measures
Fox, Jean-Paul; Marianti, Sukaesi – Journal of Educational Measurement, 2017
Response accuracy and response time data can be analyzed with a joint model to measure ability and speed of working, while accounting for relationships between item and person characteristics. In this study, person-fit statistics are proposed for joint models to detect aberrant response accuracy and/or response time patterns. The person-fit tests…
Descriptors: Accuracy, Reaction Time, Statistics, Test Items
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability
Meng, Xiang-Bin; Tao, Jian; Chang, Hua-Hua – Journal of Educational Measurement, 2015
The assumption of conditional independence between the responses and the response times (RTs) for a given person is common in RT modeling. However, when the speed of a test taker is not constant, this assumption will be violated. In this article we propose a conditional joint model for item responses and RTs, which incorporates a covariance…
Descriptors: Reaction Time, Test Items, Accuracy, Models
Wang, Chun; Fan, Zhewen; Chang, Hua-Hua; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2013
The item response times (RTs) collected from computerized testing represent an underutilized type of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. Current models for RTs mainly focus on parametric models, which have the…
Descriptors: Reaction Time, Computer Assisted Testing, Test Items, Accuracy
Wang, Zhen; Yao, Lihua – ETS Research Report Series, 2013
The current study used simulated data to investigate the properties of a newly proposed method (Yao's rater model) for modeling rater severity and its distribution under different conditions. Our study examined the effects of rater severity, distributions of rater severity, the difference between item response theory (IRT) models with rater effect…
Descriptors: Test Format, Test Items, Responses, Computation
Jiao, Hong; Wang, Shudong; He, Wei – Journal of Educational Measurement, 2013
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Descriptors: Computation, Item Response Theory, Models, Monte Carlo Methods
Babcock, Ben – Applied Psychological Measurement, 2011
Relatively little research has been conducted with the noncompensatory class of multidimensional item response theory (MIRT) models. A Monte Carlo simulation study was conducted exploring the estimation of a two-parameter noncompensatory item response theory (IRT) model. The estimation method used was a Metropolis-Hastings within Gibbs algorithm…
Descriptors: Item Response Theory, Sampling, Computation, Statistical Analysis
Previous Page | Next Page »
Pages: 1 | 2